LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Usage
  • Adding Metadata
  • Chaining
  1. 05-Memory

Memory Using SQLite

PreviousLCEL (Remembering Conversation History): Adding MemoryNextConversation With History

Last updated 28 days ago

  • Author:

  • Peer Review: ,

  • Proofread :

  • This is a part of

Overview

This tutorial explains the SQLChatMessageHistory class, which allows storing chat history in any database supported by SQLAlchemy.

Structured Query Language (SQL) is a domain-specific language used in programming and designed for managing data held in a Relational Database Management System (RDBMS), or for stream processing in a Relational Data Stream Management System (RDSMS). It is particularly useful for handling structured data, including relationships between entities and variables.

SQLAlchemy is an open-source SQL toolkit and Object-Relational Mapper (ORM) for the Python programming language, released under the MIT License.

To use a database other than SQLite, please make sure to install the appropriate database driver first.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain_opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langchain_community",
        "langchain_openai",
        "langchain_core",
        "SQLAlchemy",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "MemoryUsingSQLite",
    }
)

You can alternatively set OPENAI_API_KEY in .env file and load it.

[Note] This is not necessary if you've already set OPENAI_API_KEY in previous steps.

from dotenv import load_dotenv

load_dotenv()

Usage

To use the storage, you need to provide only the following 2 things:

  1. session_id - A unique identifier for the session, such as a user name, email, chat ID, etc.

  2. connection - A string that specifies the database connection. This string will be passed to SQLAlchemy's create_engine function.

from langchain_community.chat_message_histories import SQLChatMessageHistory

# Initialize chat history with session ID and database connection.
chat_message_history = SQLChatMessageHistory(
    session_id="sql_history", connection="sqlite:///sqlite.db"
)
# Add a user message
chat_message_history.add_user_message(
    "Hello, nice to meet you! My name is Heesun :) I'm a LangChain developer. I look forward to working with you!"
)
# Add an AI message
chat_message_history.add_ai_message(
    "Hi, Heesun! Nice to meet you. I look forward to working with you too!"
)

Now, let's check the stored conversation history.

chat_message_history.messages
[HumanMessage(content="Hello, nice to meet you! My name is Heesun :) I'm a LangChain developer. I look forward to working with you!", additional_kwargs={}, response_metadata={}),
     AIMessage(content='Hi, Heesun! Nice to meet you. I look forward to working with you too!', additional_kwargs={}, response_metadata={})]

You can also clear the session memory from db:

# Clear the session memory
chat_message_history.clear()
chat_message_history.messages
[]

Adding Metadata

Metadata can be added by directly creating HumanMessage and AIMessage objects. This approach enables flexible data handling and logging.

Parameters:

  • additional_kwargs - Stores custom tags or metadata, such as priority or task type.

  • response_metadata - Captures AI response details, including model, timestamp, and token count.

These fields enhance debugging and task tracking through detailed data storage.

from langchain_core.messages import HumanMessage

# Add a user message with additional metadata.
user_message = HumanMessage(
    content="Can you help me summarize this text?",
    additional_kwargs={"task": "summarization"},
)

# Add the message to chat history.
chat_message_history.add_message(user_message)
chat_message_history.messages
[HumanMessage(content='Can you help me summarize this text?', additional_kwargs={'task': 'summarization'}, response_metadata={})]
from langchain_core.messages import AIMessage

# Add an AI message with response metadata.
ai_message = AIMessage(
    content="Sure! Here's the summary of the provided text.",
    response_metadata={"model": "gpt-4", "token_count": 30, "response_time": "150ms"},
)

# Add the message to chat history.
chat_message_history.add_message(ai_message)
chat_message_history.messages
[HumanMessage(content='Can you help me summarize this text?', additional_kwargs={'task': 'summarization'}, response_metadata={}),
     AIMessage(content="Sure! Here's the summary of the provided text.", additional_kwargs={}, response_metadata={'model': 'gpt-4', 'token_count': 30, 'response_time': '150ms'})]

Chaining

from langchain_core.prompts import (
    ChatPromptTemplate,
    MessagesPlaceholder,
)
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant."),
        # Placeholder for chat history
        MessagesPlaceholder(variable_name="chat_history"),
        ("human", "{question}"),
    ]
)

# Chaining
chain = prompt | ChatOpenAI(model_name="gpt-4o") | StrOutputParser()

The following shows how to create a function that returns chat history from sqlite.db.

def get_chat_history(user_id, conversation_id):
    return SQLChatMessageHistory(
        table_name=user_id,
        session_id=conversation_id,
        connection="sqlite:///sqlite.db",
    )

Set config_fields to provide reference information when retrieving conversation details.

from langchain_core.runnables.utils import ConfigurableFieldSpec

config_fields = [
    ConfigurableFieldSpec(
        id="user_id",
        annotation=str,
        name="User ID",
        description="Unique identifier for a user.",
        default="",
        is_shared=True,
    ),
    ConfigurableFieldSpec(
        id="conversation_id",
        annotation=str,
        name="Conversation ID",
        description="Unique identifier for a conversation.",
        default="",
        is_shared=True,
    ),
]
chain_with_history = RunnableWithMessageHistory(
    chain,
    get_chat_history,
    input_messages_key="question",
    history_messages_key="chat_history",
    # Set parameters for retrieving chat history
    history_factory_config=config_fields,
)

Set the "user_id" and "conversation_id" key-value pairs under the "configurable" key.

# Config settings
config = {"configurable": {"user_id": "user1", "conversation_id": "conversation1"}}

Let's ask a question about the name. If there is any previously saved conversation history, it will provide the correct response.

  • Use the invoke method of the chain_with_history object to generate an answer to the question.

  • Pass a question dictionary and config settings to the invoke method as inputs.

# Execute by passing the question and config
chain_with_history.invoke(
    {"question": "Hi, nice to meet you. My name is Heesun."}, config
)
'Hi Heesun! Nice to meet you again. How can I help you today?'
# Execute a follow-up question
chain_with_history.invoke({"question": "What is my name?"}, config)
'Your name is Heesun.'

This time, set the same user_id but use a different value for conversation_id.

# Config settings
config = {"configurable": {"user_id": "user1", "conversation_id": "conversation2"}}

# Execute by passing the question and config
chain_with_history.invoke({"question": "What is my name?"}, config)
"I'm sorry, but I don't have access to personal information, so I don't know your name. If you'd like, you can tell me your name, and I can address you by it."

Set up the environment. You may refer to for more details.

You can checkout the for more details.

You can easily integrate this chat history class with .

Wikipedia: SQL
SQLAlchemy
Environment Setup
langchain-opentutorial
LCEL Runnables
Heesun Moon
harheem
gyjong
Juni Lee
LangChain Open Tutorial
Overview
Environment Setup
Usage
Chaining