LangChain OpenTutorial
  • šŸ¦œļøšŸ”— The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Example Usage of RecursiveCharacterTextSplitter
  1. 07-TextSplitter

02. RecursiveCharacterTextSplitter

PreviousCharacter Text SplitterNextText Splitting Methods in NLP

Last updated 28 days ago

  • Author:

  • Design:

  • Peer Review : ,

  • Proofread :

  • This is a part of

Overview

This tutorial explains how to use the RecursiveCharacterTextSplitter, the recommended way to split text in LangChain.

The RecursiveCharacterTextSplitter works by taking a list of characters and attempting to split the text into smaller pieces based on that list. It continues splitting until the pieces are sufficiently small.

By default, the character list is ['\n\n', '\n', ' ", "'], which means it recursively splits in the following order: paragraph -> sentence -> word. This prioritizes keeping paragraphs, then sentences, then words together as much as possible, as these are considered the most semantically related units.

Here's a summary of how it works:

  1. Splitting is done by a list of characters ([ā€˜\n\n’, ā€˜\n’, ā€˜ ā€œ, ā€ā€™]).

  2. Chunk size is measured by the number of characters.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
!pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langchain_text_splitters",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "RecursiveCharacterTextSplitter", 
    }
)
Environment variables have been set successfully.
from dotenv import load_dotenv

load_dotenv()
False

Example Usage of RecursiveCharacterTextSplitter

This example demonstrates how to use the RecursiveCharacterTextSplitter to split text into smaller chunks.

  1. Open the text file appendix-keywords.txt and read its contents and store this text in a variable named file.

# Open the appendix-keywords.txt file to create a file object named f.
with open("./data/appendix-keywords.txt") as f:
    file = f.read()  # Reads the contents of the file and stores them in the file variable.
  1. Display some of the content read from the file.

# Output the top 500 characters read from the file.
print(file[:500])
Semantic Search
    
    Definition: A vector store is a system that stores data converted to vector format. It is used for search, classification, and other data analysis tasks.
    Example: Vectors of word embeddings can be stored in a database for quick access.
    Related keywords: embedding, database, vectorization, vectorization
    
    Embedding
    
    Definition: Embedding is the process of converting textual data, such as words or sentences, into a low-dimensional, continuous vector. This allows computers to unders
  1. Now, create a RecursiveCharacterTextSplitter with the following parameters:

  • chunk_size = 250 (limits each chunk to 250 characters)

  • chunk_overlap = 50 (allows 50 characters of overlap between chunks)

  • length_function = len() (specifies that built-in len() function for length calculation)

  • is_separator_regex = False (disables regular expression separators).

from langchain_text_splitters import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    # Set the chunk size to very small. These settings are for illustrative purposes only.
    chunk_size=250,
    # Sets the number of overlapping characters between chunks.
    chunk_overlap=50,
    # Specifies a function to calculate the length of the string.
    length_function=len,
    # Sets whether to use regular expressions as delimiters.
    is_separator_regex=False,
)
  1. Use the text_splitter to split the text stored in the file variable into a list of Document objects. This list will be stored in a variable called texts.

  2. Print the first and second documents using print(texts[0]) and print(texts[1]).

# Split the file text into documents using text_splitter.
texts = text_splitter.create_documents([file])
print(texts[0])  # Outputs the first document in the split document.
print("===" * 20)
print(texts[1])  # Output the second document of the split document.
page_content='Semantic Search'
    ============================================================
    page_content='Definition: A vector store is a system that stores data converted to vector format. It is used for search, classification, and other data analysis tasks.
    Example: Vectors of word embeddings can be stored in a database for quick access.'

Alternatively, you can also use the text_splitter.split_text() function to split the file text.

# Splits the text and returns the first two elements of the split text.
text_splitter.split_text(file)[:2]
['Semantic Search',
     'Definition: A vector store is a system that stores data converted to vector format. It is used for search, classification, and other data analysis tasks.\nExample: Vectors of word embeddings can be stored in a database for quick access.']

Set up the environment. You may refer to for more details.

You can checkout the for more details.

LangChain: Recursively split by character
Environment Setup
langchain-opentutorial
fastjw
fastjw
Wonyoung Lee
sohyunwriter
Chaeyoon Kim
LangChain Open Tutorial
Overview
Environement Setup
Example Usage of RecursiveCharacterTextSplitter