LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Getting Prompts from Hub
  • Register Your Own Prompt to Prompt Hub
  1. 02-Prompt

LangChain Hub

PreviousFew-Shot TemplatesNextPersonal Prompts for LangChain

Last updated 28 days ago

  • Author:

  • Peer Review: , ,

  • Proofread :

  • This is a part of

Overview

This is an example of retrieving and executing prompts from LangChain Hub.

LangChain Hub is a repository that collects prompts frequently used across various projects. This enables developers to efficiently search for, retrieve, and execute these prompts whenever needed, thereby streamlining their workflow.

  • Prompt Search and Categorization: Developers can easily find the desired prompts using keyword-based search and categorization.

  • Reusability: Once created, a prompt can be reused across multiple projects, reducing development time.

  • Real-time Execution: Retrieved prompts can be executed immediately through LangChain to view the results in real time.

  • Extensibility and Customization: In addition to the default prompts provided, users have the flexibility to add and modify prompts according to their needs.

Table of Contents

References


Environment Setup

[Note]

  • You can check LangChain Hub prompts at the address below.

    • You can retrieve prompts by using the prompt repo ID, and you can also get prompts for specific versions by adding the commit ID.

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

You can check LangChain Hub prompts at the address below.

You can retrieve prompts using the prompt repo ID, and you can also get prompts for specific versions by adding the commit ID.

%%capture --no-stderr
%pip install langchain-opentutorial langchain langchainhub
# Install required packages 
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain",
        "langchainhub"
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        # Get an API key for your Personal organization if you have not yet. The hub will not work with your non-personal organization's api key!
        # If you already have LANGCHAIN_API_KEY set to a personal organization’s api key from LangSmith, you can skip this.
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "Personal Prompts for LangChain",
    }
)
Environment variables have been set successfully.

Getting Prompts from Hub

  • Retrieve and execute prompts directly from LangChain Hub to accelerate your workflow.

  • How to seamlessly integrate available prompts into your projects.

from langchain import hub 

# Get the latest version of the prompt
prompt = hub.pull("rlm/rag-prompt")
# Print the prompt content
print(prompt)
input_variables=['context', 'question'] input_types={} partial_variables={} metadata={'lc_hub_owner': 'rlm', 'lc_hub_repo': 'rag-prompt', 'lc_hub_commit_hash': '50442af133e61576e74536c6556cefe1fac147cad032f4377b60c436e6cdcb6e'} messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], input_types={}, partial_variables={}, template="You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\nQuestion: {question} \nContext: {context} \nAnswer:"), additional_kwargs={})]
# To get a specific version of prompt, specify the version hash
prompt = hub.pull("rlm/rag-prompt:50442af1")
prompt
ChatPromptTemplate(input_variables=['context', 'question'], input_types={}, partial_variables={}, metadata={'lc_hub_owner': 'rlm', 'lc_hub_repo': 'rag-prompt', 'lc_hub_commit_hash': '50442af133e61576e74536c6556cefe1fac147cad032f4377b60c436e6cdcb6e'}, messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], input_types={}, partial_variables={}, template="You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\nQuestion: {question} \nContext: {context} \nAnswer:"), additional_kwargs={})])

Register Your Own Prompt to Prompt Hub

  • Registering your own prompt to Prompt Hub allows developers to share custom prompts with the community, making them reusable across various projects.

  • This feature enhances prompt standardization and efficient management, streamlining development and fostering collaboration.

from langchain.prompts import ChatPromptTemplate


prompt = ChatPromptTemplate.from_template(
    "Summarize the following text based on the given content. Please write the answer in Korean\n\nCONTEXT: {context}\n\nSUMMARY:"
)
prompt
ChatPromptTemplate(input_variables=['context'], input_types={}, partial_variables={}, messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context'], input_types={}, partial_variables={}, template='Summarize the following text based on the given content. Please write the answer in Korean\n\nCONTEXT: {context}\n\nSUMMARY:'), additional_kwargs={})])
from langchain import hub

# Upload the prompt to the hub
hub.push("cjlee/simple-summary-korean-1", prompt)
'https://smith.langchain.com/prompts/simple-summary-korean-1/3635fdf1?organizationId=f03a1307-d0da-5ea5-9ee0-4fc021a0d5b2'

The following is the output after successfully uploading to Hub.

ID/PromptName/Hash

from langchain import hub

# Get the prompt from the hub
pulled_prompt = hub.pull("teddynote/simple-summary-korean")
# Print the prompt content
print(pulled_prompt)
input_variables=['context'] input_types={} partial_variables={} metadata={'lc_hub_owner': 'teddynote', 'lc_hub_repo': 'simple-summary-korean', 'lc_hub_commit_hash': 'b7e31df5666de7758d72fd038875973520d141548280185ee5b5ba846f015308'} messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context'], input_types={}, partial_variables={}, template='주어진 내용을 바탕으로 다음 문장을 요약하세요. 답변은 반드시 한글로 작성하세요\n\nCONTEXT: {context}\n\nSUMMARY:'), additional_kwargs={})]

Set up the environment. You may refer to for more details.

You can checkout the for more details.

LangChain Hub
Environment Setup
langchain-opentutorial
Output
ChangJun Lee
musangk
ErikaPark
jeong-wooseok
BokyungisaGod
LangChain Open Tutorial
Overview
Environment Setup
Getting Prompts from Hub
Register Your Own Prompt to Prompt Hub