This tutorial will guide you through the process of building a multimodal Retrieval-Augmented Generation (RAG) chatbot for a shopping mall. The chatbot will be able to answer user questions about products, including those accompanied by images, making it a powerful tool for enhancing the shopping experience.
The chatbot focuses on RAG-based product recommendation, leveraging both text and image data for accurate and personalized suggestions. For deployment in real-world services, additional techniques such as agent-based architectures or model fine-tuning may be required to optimize performance and meet specific business needs.
By following this tutorial, you’ll gain insights into creating an advanced, flexible shopping assistant capable of handling diverse query types and providing a seamless user experience.
product_image_db: Store image embeddings generated using the OpenCLIP model.
product_text_db: Store text embeddings generated using the text-embedding-ada-002 model.
Vector Search
multimodal_retriever: Retrieve data from product_image_db for any type of query.
text_embedding_retriever: Retrieve data from product_text_db. If query has image data, it will be described by LLM and then try to retrieve data from product_text_db.
hybrid_retriever: If query has image data, use multimodal_retriever to retrieve image data. If query has text data, use text_embedding_retriever to retrieve text data.
Multimodal RAG Chatbot
Build a chatbot that can answer questions using the retriever we defined.
[notice] A new release of pip is available: 24.1 -> 24.3.1
[notice] To update, run: pip install --upgrade pip
# Set environment variables
from langchain_opentutorial import set_env
set_env(
{
"OPENAI_API_KEY": "Your API KEY",
"LANGCHAIN_API_KEY": "",
"LANGCHAIN_TRACING_V2": "true",
"LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
"LANGCHAIN_PROJECT": "06-MultiModal/11-ShoppingQnA",
}
)
Environment variables have been set successfully.
# Alternatively, one can set environmental variables with load_dotenv
from dotenv import load_dotenv
load_dotenv(override=True)
True
Data Augmentation
To generate a dataset suitable for a virtual shopping mall’s product database using the KREAM Product BLIP Captions dataset, we need to perform data augmentation.
from datasets import load_dataset
import os
os.makedirs("./data", exist_ok=True)
os.makedirs("./data/11-ShoppingQnA-cache", exist_ok=True)
# Load dataset
dataset = load_dataset(
"hahminlew/kream-product-blip-captions",
# if you want to use cache, you can use cache_dir
# cache_dir="./data/11-ShoppingQnA-cache",
)
print(dataset)
top, P40 Knit Black, a photography of a black long sleeved shirt with a motorcycle motif
from PIL import Image
def resize_image(image, scale_factor):
"""
Function to reduce the resolution of an image by a specified scale factor.
Args:
image (PIL.Image.Image): A PIL Image object.
scale_factor (float): The scale factor to reduce the resolution (0 < scale_factor ≤ 1).
Returns:
PIL.Image.Image: A PIL Image object with reduced resolution.
"""
if not (0 < scale_factor <= 1):
raise ValueError(
"scale_factor must be greater than 0 and less than or equal to 1."
)
# get original size
original_width, original_height = image.size
# calculate new size
new_width = int(original_width * scale_factor)
new_height = int(original_height * scale_factor)
# resize image
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return resized_image
image_resized_dataset = [
{"resized_image": resize_image(item["image"], 0.5), **item}
for item in sampled_dataset
]
print(image_resized_dataset[0])
display(image_resized_dataset[0]["resized_image"])
{'resized_image': , 'image': , 'text': 'top, P40 Knit Black, a photography of a black long sleeved shirt with a motorcycle motif'}
{'image': , 'resized_image': , 'type': 'top', 'name': ' P40 Knit Black', 'summary': ' a photography of a black long sleeved shirt with a motorcycle motif'}
from langchain.schema import BaseOutputParser, OutputParserException
import re
# Json Output Parser
class JsonOutputParser(BaseOutputParser[dict]):
def parse(self, text: str) -> dict:
try:
match = re.search(r"\{.*\}", text, re.DOTALL)
if not match:
raise OutputParserException("JSON type response not found")
json_text = match.group(0)
return json.loads(json_text)
except json.JSONDecodeError as e:
raise OutputParserException(f"JSON parsing error: {e}")
# Json Data Augmentation
import base64
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from io import BytesIO
import json
from langchain_core.output_parsers import BaseOutputParser
# Create model
llm_multimodal = ChatOpenAI(model_name="gpt-4o")
# PIL Image to Base64
def pil_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def process_item_to_prompt(item):
image_data = pil_image_to_base64(item["resized_image"])
item["base64_image"] = image_data
item["base64_image_url"] = f"data:image/jpeg;base64,{image_data}"
type = item["type"]
name = item["name"]
message = HumanMessage(
content=[
{
"type": "text",
"text": "Look at the image and properties of this product and describe it\n"
"Format the response as a JSON object with four keys: 'summary', 'image_summary' and 'tags'.\n"
"- 'summary': Summary of product form based on appearance in a sentence\n"
"- 'image_summary': Describe this image of product based on its type, color, material, pattern, and features.\n"
"- 'tags': An array of strings representing key features or properties that can represent color, pattern, material, type of the product.\n",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
{
"type": "text",
"text": f"The product is a type of {type} and name is {name}.",
},
],
)
return message
response = (llm_multimodal | JsonOutputParser()).invoke(
[process_item_to_prompt(processed_dataset[0])]
)
print(response)
# Use batch to process multiple messages
response = (llm_multimodal | JsonOutputParser()).batch(
[
[process_item_to_prompt(processed_dataset[1])],
[process_item_to_prompt(processed_dataset[2])],
]
)
print(response[0])
print(response[1])
{'summary': 'A black knit top featuring an airplane graphic on the front.', 'image_summary': 'This is a black knit sweater with a colorful airplane design. The graphic includes red and white accents and has a playful, cartoonish style. The material appears to be soft knit fabric.', 'tags': ['black', 'knit', 'sweater', 'airplane', 'graphic', 'long-sleeve']}
{'summary': 'The product is a sleeveless, padded gilet with a high collar and button closure.', 'image_summary': 'This is a black, quilted, sleeveless gilet made from a shiny material. It features a high collar, button closure, and two front pockets with flaps. The gilet has a logo patch on the chest area.', 'tags': ['black', 'quilted', 'sleeveless', 'gilet', 'padded', 'high collar', 'button closure']}
{'summary': 'The product is a pair of navy cargo shorts with a sporty design.', 'image_summary': 'These are navy blue cargo shorts made from Gore-Tex material, featuring side pockets with blue zippers, a belt, and a logo on the front.', 'tags': ['navy', 'cargo shorts', 'Gore-Tex', 'blue zippers', 'belt', 'logo']}
# Description Data Augmentation
from langchain_core.output_parsers import StrOutputParser
json_augmentation_data = {**processed_dataset[0], **response[0]}
def serialize_item(item):
result = json.dumps(
{
k: v
for k, v in item.items()
if k != "image"
and k != "resized_image"
and k != "base64_image_url"
and k != "base64_image"
},
indent=4,
)
return result
def json_augmentation_item_to_prompt(item):
message = HumanMessage(
content=[
{
"type": "text",
"text": "look at the image of the product and properties and write a detailed and narrative product description\n"
"Keep a lively tone and use a hook to make users want to buy the product.\n"
"Do not include tags or other descriptions.\n"
"\n"
"Here are the properties of the product\n"
f"{serialize_item(item)}\n",
},
{
"type": "image_url",
"image_url": {"url": item["base64_image_url"]},
},
],
)
return message
response = (llm_multimodal | StrOutputParser()).invoke(
[json_augmentation_item_to_prompt(json_augmentation_data)]
)
print(response)
Introducing the P40 Knit Black—a game-changer for your wardrobe, blending style and functionality in one sleek package. This sleeveless, padded gilet is your perfect companion for those breezy outings when you want to stay cozy yet effortlessly chic.
Imagine striding through the city streets, the high collar adding a touch of sophistication, while the shiny, quilted fabric catches the light just right. The button closure ensures a snug fit, and the two front pockets with flaps are perfect for stashing your essentials or keeping your hands warm.
But wait, there's more! The subtle logo patch on the chest adds a dash of flair, making sure you stand out in the crowd. Whether you're layering it over a casual tee or pairing it with a smart sweater, the P40 Knit Black is versatile enough to complement any look.
Ready to elevate your style game? This gilet is calling your name—grab it before it's gone!
# Combine Data Augmentation Chains
from langchain_core.runnables import (
RunnableLambda,
RunnableParallel,
RunnablePassthrough,
)
from pprint import pprint
augmentation_multimodal_chain = (
RunnableParallel( # JSON Augmentation
{
"processed": RunnablePassthrough(),
"json_augmented": RunnableLambda(lambda x: [process_item_to_prompt(x)])
| llm_multimodal
| JsonOutputParser(),
}
)
| RunnableLambda( # Merge JSON Augmentation and Processed Data
lambda x: {
**x["processed"],
**x["json_augmented"],
}
)
| RunnableParallel( # Description Augmentation
{
"process_and_json_augmented": lambda x: x,
"description_augmented": RunnableLambda(
lambda x: [json_augmentation_item_to_prompt(x)]
)
| llm_multimodal
| StrOutputParser(),
}
)
| RunnableLambda( # Merge Description Augmentation and Processed Data
lambda x: {
**x["process_and_json_augmented"],
"description": x["description_augmented"],
}
)
)
augmentation_dataset = augmentation_multimodal_chain.batch(processed_dataset)
print(len(augmentation_dataset))
pprint(
{
k: v
for k, v in augmentation_dataset[0].items()
if k != "base64_image" and k != "base64_image_url"
}
)
200
{'description': '**Take Flight with Style: The P40 Knit Black Top**\n'
'\n'
'Get ready to soar above the ordinary with the P40 Knit Black '
"top, where comfort meets high-flying fashion! This isn't just "
"any knit top—it's your ticket to a sky-high style statement.\n"
'\n'
'Crafted in versatile black, this top features a vibrant '
'airplane graphic that captures the spirit of adventure. The '
'long sleeves and round neckline ensure cozy wear, making it '
'perfect for any season. Whether you’re navigating the skies '
'or just cruising through your day, the P40 Knit Black top is '
'your go-to choice for a look that’s both bold and '
'effortlessly chic.\n'
'\n'
'Don’t let this runway-ready piece fly by—grab yours and let '
'your style take off!',
'image': ,
'image_summary': 'This is a black knit top with a colorful airplane graphic '
'on the front. It features long sleeves and a round '
'neckline.',
'name': ' P40 Knit Black',
'resized_image': ,
'summary': 'A black knit top with a graphic design of an airplane.',
'tags': ['black', 'knit', 'graphic', 'airplane', 'top'],
'type': 'top'}
Storing embedded values in VectorDB
We will store the augmented data in a vector database. Image and text data will be embedded separately. In other words, we will use two different vector databases.
product_image_db : Image data will be embedded using OpenCLIP model.
product_text_db : Text data will be embedded using text-embedding-ada-002 model.
database = [
{"id": str(index), **item} for index, item in enumerate(augmentation_dataset)
]
# Check Device Availability
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
print("No GPU available, using CPU")
print("When using CPU, python kernel could be terminated")
device = torch.device("cpu")
# Define Some Utility Functions
import base64
import re
def is_base64(s: str) -> bool:
"""
Check if the string is a valid Base64 encoded string.
"""
if not isinstance(s, str) or len(s) % 4 != 0:
return False
base64_pattern = re.compile(r"^[A-Za-z0-9+/]+={0,2}$")
if not base64_pattern.match(s):
return False
try:
decoded = base64.b64decode(s, validate=True)
return base64.b64encode(decoded).decode("utf-8") == s
except Exception:
return False
def base64_to_pil(base64_str: str) -> Image.Image:
"""
Convert a Base64-encoded string to a PIL.Image.Image object.
Args:
base64_str (str): A Base64-encoded image string.
Returns:
PIL.Image.Image: The converted PIL Image object.
"""
image_data = base64.b64decode(base64_str)
image_buffer = BytesIO(image_data)
pil_image = Image.open(image_buffer)
return pil_image
def numbers_from_brackets(input_string):
"""
Extract numbers in [number] format from a string and return them as an array.
"""
matches = re.findall(r"\[(\d+)\]", input_string)
return [int(match) for match in matches]
# Load OpenCLIP Model
from langchain_experimental.open_clip import OpenCLIPEmbeddings
MODEL = "ViT-B-32"
CHECKPOINT = "metaclip_fullcc"
class Base64OpenCLIPEmbeddings(OpenCLIPEmbeddings):
"""
This class extends OpenCLIPEmbeddings to support image embeddings.
OpenCLIP is a multimodal embedding model, but the original embed_documents method in OpenCLIPEmbeddings supports only text.
This implementation adds support not only for text but also for embedding images in base64 format.
"""
def __init__(self, model_name: str, checkpoint: str):
super().__init__(model_name=model_name, checkpoint=checkpoint)
self.model = self.model.to(device)
self.model.eval()
def embed_documents(self, query_or_image_list: list[str]) -> list[list[float]]:
"""
The logic for this method is based on the existing embed_image method, which was adapted and overridden to work with embed_documents.
https://github.com/langchain-ai/langchain-experimental/blob/b3172d8da40907dc9627d394d94784064c332f85/libs/experimental/langchain_experimental/open_clip/open_clip.py#L47-L95
This method is used to embed text and image data. `query_or_image_list` can be a list of user query or image data formatted as base64 string.
If the data is image, it will be embedded by `embed_base64_image` method.
If the data is text, it will be embedded by `embed_text` method.
"""
embeddings_vectors = [
(
self.embed_base64_image(image)
if self.is_base64(image)
else self.embed_text(image)
)
for image in query_or_image_list
]
return embeddings_vectors
def embed_text(self, text: str) -> list[float]:
# Tokenize the text
tokenized_text = self.tokenizer(text).to(device)
# Encode the text to get the embeddings
embeddings_tensor = self.model.encode_text(tokenized_text)
# Normalize the embeddings
norm = embeddings_tensor.norm(p=2, dim=1, keepdim=True)
normalized_embeddings_tensor = embeddings_tensor.div(norm)
# Convert normalized tensor to list and add to the text_features list
embeddings_list = normalized_embeddings_tensor.squeeze(0).tolist()
return embeddings_list
def embed_base64_image(self, base64_image: str) -> list[float]:
pil_image = self.base64_to_pil(base64_image)
preprocessed_image = self.preprocess(pil_image).unsqueeze(0).to(device)
embeddings_tensor = self.model.encode_image(preprocessed_image)
# Normalize the embeddings tensor
norm = embeddings_tensor.norm(p=2, dim=1, keepdim=True)
normalized_embeddings_tensor = embeddings_tensor.div(norm)
# Convert tensor to list and add to the image_features list
embeddings_list = normalized_embeddings_tensor.squeeze(0).tolist()
return embeddings_list
def base64_to_pil(self, base64_str: str) -> Image.Image:
return base64_to_pil(base64_str)
def is_base64(self, base64_str: str) -> bool:
return is_base64(base64_str)
image_embeddings = Base64OpenCLIPEmbeddings(
model_name=MODEL,
checkpoint=CHECKPOINT,
)
/Users/obov/Library/Caches/pypoetry/virtualenvs/langchain-opentutorial-8lQvKQIC-py3.11/lib/python3.11/site-packages/open_clip/factory.py:380: UserWarning: These pretrained weights were trained with QuickGELU activation but the model config does not have that enabled. Consider using a model config with a "-quickgelu" suffix or enable with a flag.
warnings.warn(
from langchain_chroma import Chroma
from langchain_core.documents import Document
# This code could cause kernel termination
product_image_db = Chroma.from_documents(
embedding=image_embeddings,
collection_name="products_image",
documents=[
Document(page_content=item["base64_image"], metadata={"id": item["id"]})
for item in database
],
)
all_embedded_image_data = product_image_db.get()
len(all_embedded_image_data["ids"])
200
# if you want to delete all data use this snippet
# product_image_db.delete(ids=all_embedded_image_data["ids"])
# len(product_image_db.get()["ids"])
from langchain_openai.embeddings.base import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
description_list = [
Document(page_content=item["description"], metadata={"id": item["id"]})
for item in database
]
image_summary_list = [
Document(page_content=item["image_summary"], metadata={"id": item["id"]})
for item in database
]
text_summary_list = [
Document(page_content=item["summary"], metadata={"id": item["id"]})
for item in database
]
product_text_db = Chroma.from_documents(
embedding=embeddings,
collection_name="products_text",
documents=[*description_list, *image_summary_list, *text_summary_list],
)
all_embedded_text_data = product_text_db.get()
len(all_embedded_text_data["ids"])
600
# if you want to delete all data use this snippet
# product_text_db.delete(ids=all_embedded_text_data["ids"])
# len(product_text_db.get()["ids"])
Vector Search
In this section, we will define three retrievers. And then we will query the vector database using each retriever.
multimodal_retriever : Retrieve data from product_image_db for any type of query.
text_embedding_retriever : Retrieve data from product_text_db. If query has image data, it will be described by LLM and then try to retrieve data from product_text_db.
hybrid_retriever : If query has image data, use multimodal_retriever to retrieve image data. If query has text data, use text_embedding_retriever to retrieve text data.
# Define Utility Callbacks
from langchain_core.callbacks import BaseCallbackHandler
import pandas as pd
from IPython.display import HTML, display
from pydantic import BaseModel, Field
from typing import Any
class ItemWrapper(BaseModel):
description: str
image: Any = Field(default=None)
image_summary: str
name: str
resized_image: Any = Field(default=None)
summary: str
tags: list[str]
type: str
base64_image: str
base64_image_url: str
id: str
class Config:
arbitrary_types_allowed = True # Any type allowed
def __str__(self):
# When fetched data serialized to string, it will be used for display
# Such as prompt template
return (
f"id: {self.id}\n"
f"name: {self.name}\n"
f"description: {self.description}\n"
f"summary: {self.summary}\n"
f"image_summary: {self.image_summary}\n"
f"type: {self.type}\n"
f"tags: {', '.join(self.tags)}\n"
)
def __repr__(self):
return self.__str__()
def fetch_product(documents_or_ids: list[Document]) -> list[ItemWrapper]:
if len(documents_or_ids) == 0:
return []
if isinstance(documents_or_ids[0], Document):
documents = documents_or_ids
return [ItemWrapper(**database[int(item.metadata["id"])]) for item in documents]
else:
product_ids = documents_or_ids
return [ItemWrapper(**database[item]) for item in product_ids]
class LoggingCallbackHandler(BaseCallbackHandler):
def __init__(self, show_metadata: bool = False):
self.show_metadata = show_metadata
def on_retriever_start(self, _, query, **kwargs) -> None:
print(f"type : {kwargs['tags'][1]}")
print(f"========== Retrieving Query ==========")
if self.is_base64(query):
display(self.base64_to_pil(query))
else:
print("\033[33m" + query + "\033[0m")
if self.show_metadata:
print("Metadata :")
pprint(kwargs)
def on_retriever_end(self, output: list[Document], **kwargs) -> None:
print("========== Retrieving Result ==========")
if self.show_metadata:
print("Metadata :")
pprint(kwargs)
products = fetch_product(output)
self.display_products_as_table(products)
def on_chain_end(
self,
outputs: str,
**kwargs: Any,
) -> Any:
if "chatbot" not in kwargs["tags"]:
return
print("========== Chatbot Response ==========")
print("\033[33m" + outputs + "\033[0m")
if self.show_metadata:
print("Metadata :")
pprint(kwargs)
print("\n")
print("========== Recommend Products ==========")
product_ids = numbers_from_brackets(outputs)
products = fetch_product(product_ids)
if len(products) > 0:
self.display_products_as_table(products)
else:
print("No products to Recommend")
print("\n")
def display_products_as_table(self, products: list[ItemWrapper]):
data = []
for product in products:
data.append(
{
"id": product.id,
"thumbnail": product.base64_image_url,
"name": product.name,
"summary": product.summary,
}
)
df = pd.DataFrame(data)
df["thumbnail"] = df["thumbnail"].apply(
lambda url: "<img src='" + url + "' width='150' height='150'>"
)
display(HTML(df.to_html(escape=False, index=False)))
def is_base64(self, base64_str: str) -> bool:
return is_base64(base64_str)
def base64_to_pil(self, base64_str: str) -> Image.Image:
return base64_to_pil(base64_str)
for name, retriever in retrievers:
print(f"[ {name} ]")
retriever.invoke(
"pink top with heart shape logo",
{"callbacks": [LoggingCallbackHandler(show_metadata=True)]},
)
print("\n")
print("\n")
[ Multimodal Retriever ]
type : multimodal
========== Retrieving Query ==========
pink top with heart shape logo
Metadata :
{'metadata': {'ls_embedding_provider': 'Base64OpenCLIPEmbeddings',
'ls_retriever_name': 'vectorstore',
'ls_vector_store_provider': 'Chroma'},
'name': 'VectorStoreRetriever',
'parent_run_id': UUID('f83cc923-4629-440b-bece-5c75032a889f'),
'run_id': UUID('73abca67-f239-406d-8bae-39a8bb28b925'),
'tags': ['seq:step:1', 'multimodal']}
========== Retrieving Result ==========
Metadata :
{'parent_run_id': UUID('f83cc923-4629-440b-bece-5c75032a889f'),
'run_id': UUID('73abca67-f239-406d-8bae-39a8bb28b925'),
'tags': ['seq:step:1', 'multimodal']}
id
thumbnail
name
summary
60
Project G/R I Love GR T-Shirt Pink - Haus of GR Exclusive
This is a pink short-sleeved T-shirt with a graphic design on the front.
193
AMI de Coeur Oversize Intarsia Sweater Off White Red
This is an oversized sweater with a simple yet stylish design.
73
Play Comme des Garcons LS T-Shirt White
A white long-sleeve T-shirt with a simple design featuring a small red heart patch.
79
Palace Unisex Jogger Pink - 23FW
These are light pink jogger pants with an elastic waistband and cuffs.
126
Play Comme Des Garcons Red Heart Crewneck Sweater Grey
A casual grey crewneck sweater with a small red heart logo.
[ Text Embedding Retriever ]
type : text
========== Retrieving Query ==========
pink top with heart shape logo
Metadata :
{'metadata': {'ls_embedding_provider': 'OpenAIEmbeddings',
'ls_retriever_name': 'vectorstore',
'ls_vector_store_provider': 'Chroma'},
'name': 'VectorStoreRetriever',
'parent_run_id': UUID('a52f4945-86e3-48f4-be35-a0ac21dd8f72'),
'run_id': UUID('ccf13f9e-741b-4b55-a2cc-fd4af7896435'),
'tags': ['seq:step:2', 'text']}
========== Retrieving Result ==========
Metadata :
{'parent_run_id': UUID('a52f4945-86e3-48f4-be35-a0ac21dd8f72'),
'run_id': UUID('ccf13f9e-741b-4b55-a2cc-fd4af7896435'),
'tags': ['seq:step:2', 'text']}
id
thumbnail
name
summary
73
Play Comme des Garcons LS T-Shirt White
A white long-sleeve T-shirt with a simple design featuring a small red heart patch.
199
Human Made Heart L/S T-Shirt White
A long-sleeve white t-shirt featuring a bold orange heart design with text.
73
Play Comme des Garcons LS T-Shirt White
A white long-sleeve T-shirt with a simple design featuring a small red heart patch.
24
Human Made Heart Knit Sweater Beige
A beige knit sweater with a heart design and text.
60
Project G/R I Love GR T-Shirt Pink - Haus of GR Exclusive
This is a pink short-sleeved T-shirt with a graphic design on the front.
[ Hybrid Retriever ]
type : hybrid
========== Retrieving Query ==========
pink top with heart shape logo
Metadata :
{'metadata': {'ls_embedding_provider': 'OpenAIEmbeddings',
'ls_retriever_name': 'vectorstore',
'ls_vector_store_provider': 'Chroma'},
'name': 'VectorStoreRetriever',
'parent_run_id': UUID('06696052-5ed8-41a1-bd66-8b2424d0a4a8'),
'run_id': UUID('3b0208b9-fbd8-47d8-a920-cd59ba06c3a1'),
'tags': ['seq:step:1', 'hybrid']}
========== Retrieving Result ==========
Metadata :
{'parent_run_id': UUID('06696052-5ed8-41a1-bd66-8b2424d0a4a8'),
'run_id': UUID('3b0208b9-fbd8-47d8-a920-cd59ba06c3a1'),
'tags': ['seq:step:1', 'hybrid']}
id
thumbnail
name
summary
73
Play Comme des Garcons LS T-Shirt White
A white long-sleeve T-shirt with a simple design featuring a small red heart patch.
199
Human Made Heart L/S T-Shirt White
A long-sleeve white t-shirt featuring a bold orange heart design with text.
73
Play Comme des Garcons LS T-Shirt White
A white long-sleeve T-shirt with a simple design featuring a small red heart patch.
24
Human Made Heart Knit Sweater Beige
A beige knit sweater with a heart design and text.
60
Project G/R I Love GR T-Shirt Pink - Haus of GR Exclusive
This is a pink short-sleeved T-shirt with a graphic design on the front.
for name, retriever in retrievers:
print(f"[ {name} ]")
retriever.invoke(
"polo shirt",
{"callbacks": [LoggingCallbackHandler()]},
)
print("\n")
print("\n")
[ Multimodal Retriever ]
type : multimodal
========== Retrieving Query ==========
polo shirt
========== Retrieving Result ==========
id
thumbnail
name
summary
10
Nike Polo Black - Asia
A black cropped polo shirt with short sleeves.
190
AMI de Coeur Polo Shirt Black
The product is a black polo shirt with a minimalist design and an embroidered logo.
15
Stone Island 2SC18 Stretch Cotton Pique Short Sleeve Polo Shirt Navy Blue - 23FW
A navy blue short sleeve polo shirt with a classic fit and thin white striped accents.
76
Safarispot Women 1/2 Cathy and Brook Story Towel PK Tee Black
The product is a short-sleeved black polo shirt with a classic collar and a chest pocket.
40
Adidas Performance Primegreen Polo Shirt Collegiate Green - KR Sizing
This is a short-sleeve polo shirt made from a breathable material.
[ Text Embedding Retriever ]
type : text
========== Retrieving Query ==========
polo shirt
========== Retrieving Result ==========
id
thumbnail
name
summary
10
Nike Polo Black - Asia
A black cropped polo shirt with short sleeves.
130
Malbon Golf x Adidas Go-To Printed Polo Black
A short-sleeved polo shirt with a button-up collar and printed design.
141
Lacoste Basic Polo Black
A classic black polo shirt with a simple design.
130
Malbon Golf x Adidas Go-To Printed Polo Black
A short-sleeved polo shirt with a button-up collar and printed design.
48
Lacoste Novak Polo Red Purple
This is a short-sleeve polo shirt with a bold color-block design.
[ Hybrid Retriever ]
type : hybrid
========== Retrieving Query ==========
polo shirt
========== Retrieving Result ==========
id
thumbnail
name
summary
10
Nike Polo Black - Asia
A black cropped polo shirt with short sleeves.
130
Malbon Golf x Adidas Go-To Printed Polo Black
A short-sleeved polo shirt with a button-up collar and printed design.
141
Lacoste Basic Polo Black
A classic black polo shirt with a simple design.
130
Malbon Golf x Adidas Go-To Printed Polo Black
A short-sleeved polo shirt with a button-up collar and printed design.
48
Lacoste Novak Polo Red Purple
This is a short-sleeve polo shirt with a bold color-block design.
# Use `base64_image` for embedding NOT `base64_image_url`
print(is_base64(database[174]["base64_image"]))
print(is_base64(database[174]["base64_image_url"]))
for name, retriever in retrievers:
print(f"[ {name} ]")
retriever.invoke(
database[174]["base64_image"],
{"callbacks": [LoggingCallbackHandler()]},
)
print("\n")
print("\n")
These are camouflage pattern jogger pants with an elastic waistband and cuffs.
94
Auralee Heavy Milano Rib Knit Pants Black - 23AW
The product is a pair of black knit pants with a relaxed fit.
143
Stone Island 64651 Fleece Bermuda Shorts Bottle Green - 23SS
These are casual fleece Bermuda shorts in a dark green color.
184
Palace x Carhartt WIP Double Knee Pants Hamilton Brown - 23FW
The product is a pair of brown double knee pants with a durable design.
74
Safarispot Safari Capri Cargo Pants Khaki
These are khaki cargo capri pants with a relaxed fit and multiple pockets.
[ Text Embedding Retriever ]
type : text
========== Retrieving Query ==========
These are camouflage jogger pants. They feature an elastic waistband and cuffs, offering a comfortable and adjustable fit. The pants have a classic camo pattern in shades of green, brown, and black, which is often used for a casual or sporty look. They may also include pockets for added functionality.
========== Retrieving Result ==========
id
thumbnail
name
summary
174
Palace Sheller Jogger Camo - 23FW
These are camouflage pattern jogger pants with an elastic waistband and cuffs.
174
Palace Sheller Jogger Camo - 23FW
These are camouflage pattern jogger pants with an elastic waistband and cuffs.
187
Nike NSW Club French Terry Pants Brown
Casual, comfortable jogger pants suitable for everyday wear.
139
Nike NSW Club French Terry Pants Khaki
The product is a pair of khaki jogger pants with a casual design.
79
Palace Unisex Jogger Pink - 23FW
These are light pink jogger pants with an elastic waistband and cuffs.
These are black shorts designed for casual or athletic wear.
19
Emis New Logo Terry Shorts White
These are white terry shorts with black trim, designed for casual wear.
143
Stone Island 64651 Fleece Bermuda Shorts Bottle Green - 23SS
These are casual fleece Bermuda shorts in a dark green color.
81
Palace Ripstop Cotton Cargo Short Black - 23SS
The product is a pair of black cargo shorts.
2
Palace Gore-Tex R-TEK Cargo Short Navy - 23FW
The product is a pair of navy cargo shorts designed for practical use.
[ Text Embedding Retriever ]
type : text
========== Retrieving Query ==========
These are black fleece Bermuda shorts from Stone Island, style number 64651. They feature an elastic waistband with a drawstring for adjustable comfort. The shorts have a casual design with a pocket on the side, adorned with the Stone Island compass logo patch, adding a distinctive brand touch. They are likely made from a soft fleece material, ideal for a comfortable and stylish casual look.
========== Retrieving Result ==========
id
thumbnail
name
summary
143
Stone Island 64651 Fleece Bermuda Shorts Bottle Green - 23SS
These are casual fleece Bermuda shorts in a dark green color.
143
Stone Island 64651 Fleece Bermuda Shorts Bottle Green - 23SS
These are casual fleece Bermuda shorts in a dark green color.
143
Stone Island 64651 Fleece Bermuda Shorts Bottle Green - 23SS
These are casual fleece Bermuda shorts in a dark green color.
137
Millo Denim Bermuda Pants Mid Blue
These are mid-length denim Bermuda shorts with a classic design.
19
Emis New Logo Terry Shorts White
These are white terry shorts with black trim, designed for casual wear.
A black hoodie sweatshirt with a simple design and a small logo on the chest.
93
Nike NSW Club French Terry Crew Sweatshirt Marina Blue - US/EU
This is a casual crewneck sweatshirt.
25
Nike Tech Fleece Full Zip Hoodie Dark Grey Heather - Asia
This is a full-zip hoodie with a modern design and athletic style.
176
Jacquemus La Doudoune Capullo Puffy Pocket Puffer Black
A stylish black puffer jacket with a hood and drawstring waist.
107
Moncler Logo T-Shirt Dark Gray - 23SS
A casual dark gray t-shirt with a logo design.
[ Text Embedding Retriever ]
type : text
========== Retrieving Query ==========
This image shows a person wearing a dark-colored, hooded jacket. The jacket appears to be made of a sturdy, possibly water-resistant material. It has a zip-up front, ribbed cuffs, and a logo on the chest. The design suggests it is suitable for colder weather, providing warmth and protection against the elements.
========== Retrieving Result ==========
id
thumbnail
name
summary
117
Arc'teryx Kadin Hoody Black
The product is a black hooded jacket, ideal for outdoor activities.
188
Nike Windrunner Running Jacket Black - Asia
This is a black running jacket with a sporty design.
A classic black crewneck sweatshirt with a simple design.
12
Lacoste Tennis Hoodie Sweatshirt Black
A black hoodie sweatshirt with a simple design and a small logo on the chest.
93
Nike NSW Club French Terry Crew Sweatshirt Marina Blue - US/EU
This is a casual crewneck sweatshirt.
45
Lacoste Active Hoodie Short Jacket Black
A sleek, black short jacket with a hood.
154
Lacoste Basic T-Shirt White
The product is a basic white t-shirt.
[ Text Embedding Retriever ]
type : text
========== Retrieving Query ==========
The image shows a black button-up cardigan. It has a round neckline and features a small, shiny embellishment on the chest, possibly a brooch or decorative pin. The cardigan appears to be made from a knit material, suitable for layering in cooler weather.
========== Retrieving Result ==========
id
thumbnail
name
summary
116
Lacoste High-Neck Zip-Up Cardigan Black
A black high-neck zip-up cardigan featuring a simple, classic design.
116
Lacoste High-Neck Zip-Up Cardigan Black
A black high-neck zip-up cardigan featuring a simple, classic design.
134
Moncler Padded Cotton Cardigan Navy Blue - 23FW
The product is a navy blue padded cotton cardigan with a front zip closure.
53
Aviemuah Eyelet Ribbed V-Neck Cardigan Dark Grey
This is a dark grey, ribbed V-neck cardigan with a cropped fit and button closure.
180
Maison Kitsune Fox Head Patch Adjusted R-Neck Cardigan Navy
The product is a navy cardigan with a simple design and a small embroidered patch.
# Setup Message History
from langchain_core.chat_history import BaseChatMessageHistory
from typing import List
from pydantic import BaseModel, Field
from langchain_core.messages import BaseMessage
class InMemoryHistory(BaseChatMessageHistory, BaseModel):
"""In memory implementation of chat message history."""
messages: List[BaseMessage] = Field(default_factory=list)
def add_messages(self, messages: List[BaseMessage]) -> None:
"""Add a list of messages to the store"""
self.messages.extend(messages)
def clear(self) -> None:
self.messages = []
store = {}
def get_session_history(user_id: str, conversation_id: str) -> BaseChatMessageHistory:
if (user_id, conversation_id) not in store:
store[(user_id, conversation_id)] = InMemoryHistory()
return store[(user_id, conversation_id)]
# Setup Prompt
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
one_shot_prompt = [
("user", "Can you recommend some jackets suitable for outdoor activities?"),
(
"assistant",
"Here are three jackets based on the search results that are suitable for outdoor activities:\n"
"\n"
"[89]: Arc'teryx Kadin Hoody Black\n"
"- This sleek black hooded jacket is crafted from weather-resistant material, ensuring you stay dry and comfortable during outdoor adventures.\n"
"- Its subtle logo adds a touch of premium branding without being overly noticeable.\n"
"- The weather-resistant material makes it ideal for outdoor activities in unpredictable weather.\n"
"- The minimalist design ensures it pairs well with various outfits, making it versatile for different settings.\n"
"\n"
"[26]: Patagonia Torrentshell Jacket\n"
"- This lightweight and waterproof jacket is perfect for hiking and outdoor exploration in rainy conditions.\n"
"- Made from recycled materials, it is an eco-friendly choice that doesn't compromise on durability or performance.\n"
"- Its lightweight design makes it easy to pack for hikes or trips.\n"
"- The waterproof feature ensures you stay dry even in heavy rain, and the use of recycled materials supports sustainability.\n"
"\n"
"if you have any further questions or need more specific recommendations, feel free to ask! I'm here to help you find the perfect jacket for your needs.",
),
]
main_prompt = [
(
"system",
"Human would like to find fashion products, and you recommend fashion products that users want through conversations and question using only information from the search results.\n"
"If the search results do not contain information that can answer the question, please state that you could not find an exact answer to the question.\n"
"\n"
"Here are the instructions:\n"
"1. Analyze the user's query to understand the context and required information.\n"
"2. Generate a detailed and accurate response based on the provided sources.\n"
"3. For each sentence in the response, explain why you recommend the product. Use the format\n"
"[id]:productDisplayName\n"
"4. Ensure the response is coherent and logically structured.\n"
"\n"
"Here is the search result:\n"
"{context}"
"\n"
"DO NOT FORGET [id]:productDisplayName FORMAT ON RECOMMENDATION\n"
"DO NOT FORGET [id]:productDisplayName FORMAT ON RESPONSE\n",
),
MessagesPlaceholder(variable_name="history"),
("user", "{question}"),
]
prompt = ChatPromptTemplate(
[
*one_shot_prompt,
*main_prompt,
(
"human",
[{"type": "image_url", "image_url": "data:image/jpeg;base64,{image}"}],
),
]
).configurable_alternatives(
ConfigurableField(id="prompt"),
default_key="question_and_image",
question=ChatPromptTemplate(
[
*one_shot_prompt,
*main_prompt,
]
),
)
from langchain_core.runnables import ConfigurableFieldSpec
from langchain_core.runnables.history import RunnableWithMessageHistory
generation_chain = prompt | llm_multimodal
generate_with_history = RunnableWithMessageHistory(
generation_chain,
get_session_history=get_session_history,
input_messages_key="question",
history_messages_key="history",
history_factory_config=[
ConfigurableFieldSpec(
id="user_id",
annotation=str,
name="User ID",
description="Unique identifier for the user.",
default="",
is_shared=True,
),
ConfigurableFieldSpec(
id="conversation_id",
annotation=str,
name="Conversation ID",
description="Unique identifier for the conversation.",
default="",
is_shared=True,
),
],
)
chatbot = (
RunnableBranch(
# if the input is a string
(
lambda x: isinstance(x, str),
{
"question": RunnablePassthrough(),
"context": retriever,
},
),
# if the input is a dictionary
{
"question": RunnableLambda(lambda x: x["question"]),
"image": RunnableLambda(lambda x: x["image"]),
"context": RunnableParallel(
{
"from_question": (lambda x: x["question"]) | retriever,
"from_image": (lambda x: x["image"]) | retriever,
}
)
| RunnableLambda(lambda x: [*x["from_question"], *x["from_image"]]),
},
)
| generate_with_history
| StrOutputParser().with_config({"tags": ["chatbot"]})
)
response = chatbot.invoke(
"Can you recommend a black jacket that is good for city walks?",
# invocation of RunnableBindingBase can send a configs
config={
"configurable": {
# For session history use user_id and conversation_id
"user_id": "123",
"conversation_id": "1",
# Choose what retriever you want to use : "multimodal", "text", "hybrid"
"retriever": "text",
# Choose what prompt you want to use : "question", "question_and_image"
"prompt": "question",
},
"callbacks": [LoggingCallbackHandler()],
},
)
type : text
========== Retrieving Query ==========
Can you recommend a black jacket that is good for city walks?
========== Retrieving Result ==========
id
thumbnail
name
summary
16
Patagonia R2 TechFace Jacket Black
The product is a black jacket designed for outdoor use.
80
Barbour Beaufort Wax Jacket Black
A classic black wax jacket with a timeless design suitable for outdoor wear.
45
Lacoste Active Hoodie Short Jacket Black
A sleek, black short jacket with a hood.
88
Wacko Maria Coach Jacket Black
A sleek and casual black coach jacket.
68
Nike NSW Air Poly Knit Jacket Black - US/EU
A stylish black zip-up jacket with a high collar and a simple design.
========== Chatbot Response ==========
Certainly! Here are some great options for black jackets suitable for city walks:
[80]: **Barbour Beaufort Wax Jacket Black**
- This jacket offers a timeless design with its smooth, waxed texture, making it perfect for city walks where style is important.
- Its weather-resistant fabric and large front pockets combine practicality with elegance, allowing you to comfortably carry essentials.
- The button-up front and high collar provide both style and protection against the elements.
[45]: **Lacoste Active Hoodie Short Jacket Black**
- This jacket combines sleek style with comfort, featuring a modern design that's perfect for casual city strolls.
- The front zipper and elastic cuffs ensure a snug fit, keeping you cozy during brisk walks.
- Its versatile design makes it easy to pair with various outfits, enhancing your urban look.
[88]: **Wacko Maria Coach Jacket Black**
- Known for its sleek and casual design, this jacket is a great option for city walks.
- The minimalist charm, button-up front, and long sleeves with elastic cuffs offer both style and comfort.
- Its classic collar and subtle label add a touch of sophistication to your city attire.
Each of these jackets offers a unique blend of style and functionality, making them ideal for city walks.
========== Recommend Products ==========
id
thumbnail
name
summary
80
Barbour Beaufort Wax Jacket Black
A classic black wax jacket with a timeless design suitable for outdoor wear.
type : text
========== Retrieving Query ==========
what did you recommend?
========== Retrieving Result ==========
id
thumbnail
name
summary
129
Palace Hardware Work Pants Khaki - 23FW
The product is a pair of khaki work pants.
96
Fetch Polish Goose Challenger Pants Yellow
The product is a pair of padded pants with a bold color contrast.
81
Palace Ripstop Cotton Cargo Short Black - 23SS
The product is a pair of black cargo shorts.
2
Palace Gore-Tex R-TEK Cargo Short Navy - 23FW
The product is a pair of navy cargo shorts designed for practical use.
124
Nanamica Cargo Pants Navy
The product is a pair of navy cargo pants designed for utility and comfort.
========== Chatbot Response ==========
I apologize for the confusion. It seems I mistakenly provided recommendations not based on the data available. Unfortunately, the search results do not include any black jackets suitable for city walks. If you have any other specific preferences or need further assistance, feel free to ask!
========== Recommend Products ==========
No products to Recommend
response = chatbot.invoke(
# if you want to use image, you can send image and question
{
"image": encode_image_base64_from_file("./assets/11-shopping-qna-04.jpg"),
"question": "Can you recommend a few products similar to the jacket in this photo?",
},
config={
"configurable": {
"user_id": "123",
"conversation_id": "1",
"retriever": "hybrid",
},
"callbacks": [LoggingCallbackHandler()],
},
)
type : hybridtype : hybrid
========== Retrieving Query ==========
========== Retrieving Query ==========
Can you recommend a few products similar to the jacket in this photo?
========== Retrieving Result ==========
id
thumbnail
name
summary
83
Stussy SS Link Leather Bomber Black
A stylish black leather bomber jacket with a hood and zippered front.
5
Y/Project Classic Wire Denim Jacket Navy - 23SS
This is a classic denim jacket with a unique crinkled design.
173
Polyteru Dell Parka Washed Black - 23FW
The product is a long, black parka designed for outerwear.
A casual, olive gray corduroy trucker jacket with a button-up front.
9
Stussy Denim Classic Jean Espresso
The product is a pair of classic straight-leg denim jeans.
========== Retrieving Result ==========
id
thumbnail
name
summary
39
Canada Goose Crofton Bomber Black
The product is a black bomber jacket with a quilted design.
26
Diesel J-Tommy Jacket Black
The product is a black jacket with a zip-up front and minimalist design.
80
Barbour Beaufort Wax Jacket Black
A classic black wax jacket with a timeless design suitable for outdoor wear.
17
Canada Goose Hybridge Lite Tech Jacket Atlantic Navy
The product is a fitted puffer jacket designed for warmth.
70
Moncler Chevreuse Short Down Jacket Midnight Navy Blue - 23FW
This is a stylish down jacket designed for warmth and comfort.
========== Chatbot Response ==========
I'm unable to view the image to identify specific details. However, if you're looking for a black button-up jacket with a simple design, you might consider these options:
[80]: **Barbour Beaufort Wax Jacket Black**
- A classic black wax jacket with a button-up front and high collar, perfect for a timeless look.
[149]: **Polyteru Corduroy Trucker Jacket Olive Gray**
- While this is in olive gray, it offers a similar button-up style with a textured feel.
If you can provide more details about the style or features, I can offer more tailored recommendations!
========== Recommend Products ==========
id
thumbnail
name
summary
80
Barbour Beaufort Wax Jacket Black
A classic black wax jacket with a timeless design suitable for outdoor wear.