LangChain OpenTutorial
  • πŸ¦œοΈπŸ”— The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Setup Elasticsearch
  • What is Elasticsearch?
  • Key Features
  • Use Cases
  • Vector Database Functionality in Elasticsearch
  • Core Vector Database Features
  • Vector Search Use Cases
  • Prepare Data
  • Data Introduction
  • Preprocess Data
  • Setting up Elasticsearch
  • Load Embedding Model
  • Load Elasticsearch Client
  • Create Index
  • Delete Index
  • Document Manager
  • Create Instance
  • Upsert Document
  • Upsert Parallel
  • Similarity Search
  • Delete Document
  1. 09-VectorStore

Elasticsearch

PreviousQdrantNextMongoDB Atlas

Last updated 28 days ago

  • Author:

  • Peer Review: , ,

  • This is a part of

Overview

This tutorial covers how to use Elasticsearch with LangChain .

This tutorial walks you through using CRUD operations with the Elasticsearch storing , updating , deleting documents, and performing similarity-based retrieval .

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain-core",
        "langchain_openai",
        "elasticsearch",
        "python-dotenv",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "Your OPENAI API KEY",
        "LANGCHAIN_API_KEY": "Your LangChain API KEY",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "Elasticsearch",
        "ES_URL": "Your Elasticsearch URI",
        "ES_API_KEY": "Your Elasticsearch API KEY",
    }
)
Environment variables have been set successfully.

You can alternatively set API keys such as OPENAI_API_KEY in a .env file and load them.

[Note] This is not necessary if you've already set the required API keys in previous steps.

from dotenv import load_dotenv

load_dotenv(override=True)
True

Setup Elasticsearch

In order to use the Elasticsearch vector search you must install the langchain-elasticsearch package.

πŸš€ Setting Up Elasticsearch with Elastic Cloud (Colab Compatible)

  • Elastic Cloud allows you to manage Elasticsearch seamlessly in the cloud, eliminating the need for local installations.

  • It integrates well with Google Colab, enabling efficient experimentation and prototyping.

πŸ“š What is Elastic Cloud?

  • Elastic Cloud is a managed Elasticsearch service provided by Elastic.

  • Supports custom cluster configurations and auto-scaling .

  • Deployable on AWS , GCP , and Azure .

  • Compatible with Google Colab, allowing simplified cloud-based workflows.

πŸ“Œ Getting Started with Elastic Cloud

  1. Sign up for Elastic Cloud’s Free Trial .

  2. Create an Elasticsearch Cluster .

  3. Retrieve your Elasticsearch URL and Elasticsearch API Key from the Elastic Cloud Console.

  4. Add the following to your .env file

    ES_URL=https://my-elasticsearch-project-abd...:123
    ES_API_KEY=bk9X...

What is Elasticsearch?

Elasticsearch is an open-source, distributed search and analytics engine designed to store, search, and analyze both structured and unstructured data in real-time.

Key Features

  • Real-Time Search: Instantly searchable data upon ingestion

  • Large-Scale Data Processing: Efficient handling of vast datasets

  • Scalability: Flexible scaling through clustering and distributed architecture

  • Versatile Search Support: Keyword search, semantic search, and multimodal search

Use Cases

  • Log Analytics: Real-time monitoring of system and application logs

  • Monitoring: Server and network health tracking

  • Product Recommendations: Behavior-based recommendation systems

  • Natural Language Processing (NLP): Semantic text searches

  • Multimodal Search: Text-to-image and image-to-image searches

Vector Database Functionality in Elasticsearch

  • Elasticsearch supports vector data storage and similarity search via Dense Vector Fields . As a vector database, it excels in applications like NLP, image search, and recommendation systems.

Core Vector Database Features

  • Dense Vector Field: Store and query high-dimensional vectors

  • KNN (k-Nearest Neighbors) Search: Find vectors most similar to the input

  • Semantic Search: Perform meaning-based searches beyond keyword matching

  • Multimodal Search: Combine text and image data for advanced search capabilities

Vector Search Use Cases

  • Semantic Search: Understand user intent and deliver precise results

  • Text-to-Image Search: Retrieve relevant images from textual descriptions

  • Image-to-Image Search: Find visually similar images in a dataset

Elasticsearch goes beyond traditional text search engines, offering robust vector database capabilities essential for NLP and multimodal search applications.


Prepare Data

This section guides you through the data preparation process .

This section includes the following components:

  • Data Introduction

  • Preprocess Data

Data Introduction

In this tutorial, we will use the fairy tale πŸ“— The Little Prince in PDF format as our data.

This material complies with the Apache 2.0 license .

The data is used in a text (.txt) format converted from the original PDF.

You can view the data at the link below.

Preprocess Data

In this tutorial section, we will preprocess the text data from The Little Prince and convert it into a list of LangChain Document objects with metadata.

Each document chunk will include a title field in the metadata, extracted from the first line of each section.

from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import re
from typing import List

def preprocessing_data(content:str)->List[Document]:
    # 1. Split the text by double newlines to separate sections
    blocks = content.split("\n\n")

    # 2. Initialize the text splitter
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,              # Maximum number of characters per chunk
        chunk_overlap=50,            # Overlap between chunks to preserve context
        separators=["\n\n", "\n", " "]  # Order of priority for splitting
    )

    documents = []

    # 3. Loop through each section
    for block in blocks:
        lines = block.strip().splitlines()
        if not lines:
            continue

        # Extract title from the first line using square brackets [ ]
        first_line = lines[0]
        title_match = re.search(r"\[(.*?)\]", first_line)
        title = title_match.group(1).strip() if title_match else ""

        # Remove the title line from content
        body = "\n".join(lines[1:]).strip()
        if not body:
            continue

        # 4. Chunk the section using the text splitter
        chunks = text_splitter.split_text(body)

        # 5. Create a LangChain Document for each chunk with the same title metadata
        for chunk in chunks:
            documents.append(Document(page_content=chunk, metadata={"title": title}))

    print(f"Generated {len(documents)} chunked documents.")

    return documents
# Load the entire text file
with open("./data/the_little_prince.txt", "r", encoding="utf-8") as f:
    content = f.read()

# Preprocess Data
docs = preprocessing_data(content=content)
Generated 262 chunked documents.

Setting up Elasticsearch

This part walks you through the initial setup of Elasticsearch .

This section includes the following components:

  • Load Embedding Model

  • Load Elasticsearch Client

Load Embedding Model

In this section, you'll learn how to load an embedding model.

This tutorial uses OpenAI's API-Key for loading the model.

πŸ’‘ If you prefer to use another embedding model, see the instructions below.

from langchain_openai import OpenAIEmbeddings

embedding = OpenAIEmbeddings(model="text-embedding-3-large")

Load Elasticsearch Client

In this section, we'll show you how to load the database client object using the Python SDK for Elasticsearch .

import os
import logging
from elasticsearch import Elasticsearch, exceptions as es_exceptions

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def get_db_client(
    es_url: str = None,
    api_key: str = None,
    timeout: int = 120,
    retry_on_timeout: bool = True
) -> Elasticsearch:
    """
    Initializes and returns an Elasticsearch client instance.
    
    This function loads configuration (e.g., API key, host) from environment
    variables or default values and creates a client object to interact
    with the Elasticsearch Python SDK.

    Args:
        es_url (str): Elasticsearch URL. If None, uses 'ES_URL' env var.
        api_key (str): API key. If None, uses 'ES_API_KEY' env var.
        timeout (int): Request timeout in seconds.
        retry_on_timeout (bool): Whether to retry on timeout.

    Returns:
        Elasticsearch: An instance of the Elasticsearch client.

    Raises:
        ValueError: If required configuration is missing.
        es_exceptions.ConnectionError: If connection fails.
    """
    es_url = es_url or os.getenv("ES_URL")
    api_key = api_key or os.getenv("ES_API_KEY")
    if not es_url or not api_key:
        raise ValueError("Elasticsearch URL and API key must be provided.")

    client = Elasticsearch(
        es_url, api_key=api_key, request_timeout=timeout, retry_on_timeout=retry_on_timeout
    )

    try:
        if client.ping():
            logger.info("βœ… Successfully connected to Elasticsearch!")
        else:
            logger.error("❌ Failed to connect to Elasticsearch (ping returned False).")
            raise es_exceptions.ConnectionError("Failed to connect to Elasticsearch.")
    except Exception as e:
        logger.error(f"❌ Elasticsearch connection error: {e}")
        raise

    return client
client = get_db_client()
INFO:elastic_transport.transport:HEAD https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/ [status:200 duration:0.603s]
    INFO:__main__:βœ… Successfully connected to Elasticsearch!

Create Index

If you are successfully connected to Elasticsearch, some basic indexes are already created.

But, in this tutorial we will create a new index with ElasticsearchIndexManager class.

from utils.elasticsearch import ElasticsearchIndexManager

#  Create IndexManager Object
index_manger = ElasticsearchIndexManager(client)

# Create A New Index
index_name = "langchain_tutorial_es"

tutorial_index=index_manger.create_index(
    embedding, index_name=index_name, metric="cosine"
)

print(tutorial_index)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
    INFO:elastic_transport.transport:HEAD https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es [status:200 duration:0.194s]
⚠️ Index 'langchain_tutorial_es' already exists. Skipping creation.
{'status': 'exists', 'index_name': 'langchain_tutorial_es', 'embedding_dims': 3072, 'metric': 'cosine'}

Delete Index

If you want to remove an existing index from Elasticsearch, you can use the ElasticsearchIndexManager class to delete it easily.

This is useful when you want to reset your data or clean up unused indexes during development or testing.

# Delete A New Index
index_manger.delete_index(index_name)
INFO:elastic_transport.transport:HEAD https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es [status:200 duration:0.193s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es [status:200 duration:0.227s]
"βœ… Index 'langchain_tutorial_es' deleted successfully."

To proceed with the tutorial, let’s create the index once again.

tutorial_index=index_manger.create_index(
    embedding, index_name=index_name, metric="cosine"
)

print(tutorial_index)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
    INFO:elastic_transport.transport:HEAD https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es [status:404 duration:0.195s]
    INFO:elastic_transport.transport:PUT https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es [status:200 duration:0.284s]
βœ… Index 'langchain_tutorial_es' created successfully.
{'status': 'created', 'index_name': 'langchain_tutorial_es', 'embedding_dims': 3072, 'metric': 'cosine'}

Document Manager

For the LangChain-OpenTutorial, we have implemented a custom set of CRUD functionalities for VectorDBs

The following operations are included:

  • upsert : Update existing documents or insert if they don’t exist

  • upsert_parallel : Perform upserts in parallel for large-scale data

  • similarity_search : Search for similar documents based on embeddings

  • delete : Remove documents based on filter conditions

Each of these features is implemented as class methods specific to each VectorDB.

In this tutorial, you'll learn how to use these methods to interact with your VectorDB.

We plan to continuously expand the functionality by adding more common operations in the future.

Create Instance

First, create an instance of the Elasticsearch helper class to use its CRUD functionalities.

This class is initialized with the Elasticsearch Python SDK client instance and the embedding model instance , both of which were defined in the previous section.

# import ElasticsearchDocumentManager
from utils.elasticsearch import ElasticsearchDocumentManager

# connect to tutorial_index
crud_manager = ElasticsearchDocumentManager(
    client=client, index_name=index_name, embedding=embedding
)

Now you can use the following CRUD operations with the crud_manager instance.

These instance allow you to easily manage documents in your Elasticsearch .

Upsert Document

Update existing documents or insert if they don’t exist

βœ… Args

  • texts : Iterable[str] – List of text contents to be inserted/updated.

  • metadatas : Optional[List[Dict]] – List of metadata dictionaries for each text (optional).

  • ids : Optional[List[str]] – Custom IDs for the documents. If not provided, IDs will be auto-generated.

  • **kwargs : Extra arguments for the underlying vector store.

πŸ”„ Return

  • None

from uuid import uuid4

# Create ID for each document
ids = [str(uuid4()) for _ in docs]

args = {
    "texts": [doc.page_content for doc in docs[:2]],
    "metadatas": [doc.metadata for doc in docs[:2]],
    "ids": ids[:2],
    # Add additional parameters if you need
}

crud_manager.upsert(**args)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
    INFO:elastic_transport.transport:PUT https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/_bulk [status:200 duration:0.838s]
    INFO:utils.elasticsearch:βœ… Bulk upsert completed successfully.

Upsert Parallel

Perform upserts in parallel for large-scale data

βœ… Args

  • texts : Iterable[str] – List of text contents to be inserted/updated.

  • metadatas : Optional[List[Dict]] – List of metadata dictionaries for each text (optional).

  • ids : Optional[List[str]] – Custom IDs for the documents. If not provided, IDs will be auto-generated.

  • batch_size : int – Number of documents per batch (default: 32).

  • workers : int – Number of parallel workers (default: 10).

  • **kwargs : Extra arguments for the underlying vector store.

πŸ”„ Return

  • None

from uuid import uuid4

args = {
    "texts": [doc.page_content for doc in docs],
    "metadatas": [doc.metadata for doc in docs],
    "ids": ids,
    # Add additional parameters if you need
}

crud_manager.upsert_parallel(**args)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
    INFO:elastic_transport.transport:PUT https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/_bulk [status:200 duration:1.858s]
    INFO:elastic_transport.transport:PUT https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/_bulk [status:200 duration:3.299s]
    INFO:elastic_transport.transport:PUT https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/_bulk [status:200 duration:3.570s]

Similarity Search

Search for similar documents based on embeddings .

This method uses "cosine similarity" .

βœ… Args

  • query : str – The text query for similarity search.

  • k : int – Number of top results to return (default: 10).

  • **kwargs : Additional search options (e.g., filters).

πŸ”„ Return

  • results : List[Document] – A list of LangChain Document objects ranked by similarity.

# Search by Query
results = crud_manager.search(query="What is essential is invisible to the eye.", k=3)

for idx,doc in enumerate(results):
    print("="*100)
    print(f"Rank {idx+1} | Title : {doc.metadata['title']}")
    print(f"Contents : {doc.page_content}")
    print(f"Similarity Score : {doc.metadata['score']}")
    print()
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
    INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.954s]
====================================================================================================
Rank 1 | Title : Chapter 21
Contents : And he went back to meet the fox. 
"Goodbye," he said. 
"Goodbye," said the fox. "And now here is my secret, a very simple secret: It is only with the heart that one can see rightly; what is essential is invisible to the eye." 
"What is essential is invisible to the eye," the little prince repeated, so that he would be sure to remember.
"It is the time you have wasted for your rose that makes your rose so important."
Similarity Score : 0.7546974

====================================================================================================
Rank 2 | Title : Chapter 24
Contents : "Yes," I said to the little prince. "The house, the stars, the desert-- what gives them their beauty is something that is invisible!" 
"I am glad," he said, "that you agree with my fox."
Similarity Score : 0.7476631

====================================================================================================
Rank 3 | Title : Chapter 25
Contents : "The men where you live," said the little prince, "raise five thousand roses in the same garden-- and they do not find in it what they are looking for." 
"They do not find it," I replied. 
"And yet what they are looking for could be found in one single rose, or in a little water." 
"Yes, that is true," I said. 
And the little prince added: 
"But the eyes are blind. One must look with the heart..."
Similarity Score : 0.7111699
# Search with filters
results = crud_manager.search(
    query="Which asteroid did the little prince come from?",
    k=3,
    filters={"title":"Chapter 4"}
    )

for idx,doc in enumerate(results):
    print("="*100)
    print(f"Rank {idx+1} | Title : {doc.metadata['title']}")
    print(f"Contents : {doc.page_content}")
    print(f"Similarity Score : {doc.metadata['score']}")
    print()
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
    INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.584s]
====================================================================================================
Rank 1 | Title : Chapter 4
Contents : I have serious reason to believe that the planet from which the little prince came is the asteroid known as B-612. This asteroid has only once been seen through the telescope. That was by a Turkish astronomer, in 1909. 
(picture)
On making his discovery, the astronomer had presented it to the International Astronomical Congress, in a great demonstration. But he was in Turkish costume, and so nobody would believe what he said.
Grown-ups are like that...
Similarity Score : 0.8311258

====================================================================================================
Rank 2 | Title : Chapter 4
Contents : - the narrator speculates as to which asteroid from which the little prince cameγ€€γ€€
I had thus learned a second fact of great importance: this was that the planet the little prince came from was scarcely any larger than a house!
Similarity Score : 0.81760435

====================================================================================================
Rank 3 | Title : Chapter 9
Contents : - the little prince leaves his planet
Similarity Score : 0.8035729

Delete Document

Delete documents based on filter conditions

βœ… Args

  • ids : Optional[List[str]] – List of document IDs to delete. If None, deletion is based on filter.

  • filters : Optional[Dict] – Dictionary specifying filter conditions (e.g., metadata match).

  • **kwargs : Any additional parameters.

πŸ”„ Return

  • None

# Delete by ids
del_ids = ids[:5]  # The 'ids' value you want to delete
crud_manager.delete(ids=del_ids)
INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.196s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/egW1sJYBLV0ipYAYto5p [status:200 duration:0.194s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/HgW1sJYBLV0ipYAY1I_A [status:200 duration:0.194s]
    INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.197s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/ewW1sJYBLV0ipYAYto5p [status:200 duration:0.195s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/HwW1sJYBLV0ipYAY1I_A [status:200 duration:0.193s]
    INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.193s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/IAW1sJYBLV0ipYAY1I_A [status:200 duration:0.193s]
    INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.210s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/IQW1sJYBLV0ipYAY1I_A [status:200 duration:0.194s]
    INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_search [status:200 duration:0.194s]
    INFO:elastic_transport.transport:DELETE https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_doc/IgW1sJYBLV0ipYAY1I_A [status:200 duration:0.193s]
# Delete by ids with filters
filters = {"page": 6}
crud_manager.delete(filters={"title": "chapter 6"})
INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_delete_by_query?conflicts=proceed [status:200 duration:0.194s]
# Delete All
crud_manager.delete()
INFO:elastic_transport.transport:POST https://de7f5f4e2c8a452597e8e4db54c98b30.us-central1.gcp.cloud.es.io:443/langchain_tutorial_es/_delete_by_query?conflicts=proceed [status:200 duration:0.291s]

Set up the environment. You may refer to for more details.

You can checkout the for more details.

Elasticsearch Official Documentation
Elasticsearch Vector Search Documentation
Environment Setup
langchain-opentutorial
Free Trial
Data Link
Embedding Models
Elasticsearch Python SDK Docs
liniar
Joseph
Sohyeon Yim
BokyungisaGod
LangChain Open Tutorial
Overview
Environment Setup
What is Elasticsearch?
Prepare Data
Setting up Elasticsearch
Document Manager