LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Limiting Maximum Token Length to 50
  • Setting Maximum Token Length to 150
  1. 05-Memory

ConversationTokenBufferMemory

PreviousConversationBufferWindowMemoryNextConversationEntityMemory

Last updated 28 days ago

  • Author:

  • Design:

  • Peer Review : ,

  • Proofread :

  • This is a part of

Overview

ConversationTokenBufferMemory stores recent conversation history in a buffer memory and determines when to flush conversation content based on token length rather than the number of conversations.

Key parameters:

  • max_token_limit: Sets the maximum token length for storing conversation content

  • return_messages: When True, returns the messages in chat format. When False, returns a string

  • human_prefix: Prefix to add before human messages (default: "Human")

  • ai_prefix: Prefix to add before AI messages (default: "AI")

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain",
        "langchain_core",
        "langchain-anthropic",
        "langchain_community",
        "langchain_text_splitters",
        "langchain_openai",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "ConversationTokenBufferMemory",
    }
)
Environment variables have been set successfully.

You can alternatively set OPENAI_API_KEY in .env file and load it.

[Note] This is not necessary if you've already set OPENAI_API_KEY in previous steps.

from dotenv import load_dotenv

load_dotenv(override=True)
True

Limiting Maximum Token Length to 50

This section demonstrates how to limit the conversation memory to 50 tokens

from langchain.memory import ConversationTokenBufferMemory
from langchain_openai import ChatOpenAI


# Create LLM model
llm = ChatOpenAI(model_name="gpt-4o-mini")

# Configure memory
memory = ConversationTokenBufferMemory(
    llm=llm,
    max_token_limit=50,
    return_messages=True,  # Limit maximum token length to 50
)
/var/folders/1h/lrydr5_50zx8thkmv_czrbzc0000gn/T/ipykernel_59195/361976439.py:9: LangChainDeprecationWarning: Please see the migration guide at: https://python.langchain.com/docs/versions/migrating_memory/
      memory = ConversationTokenBufferMemory(
# Add arbitrary conversations
memory.save_context(
    inputs={
        "human": "Hello, I recently purchased a machine tool from your company. Could you tell me how to install it?"
    },
    outputs={
        "ai": "Hello! Thank you for your purchase. Could you please tell me the machine model number?"
    },
)
memory.save_context(
    inputs={"human": "Yes, the model number is XG-200."},
    outputs={
        "ai": "Thank you. I'll help you with the installation guide for the XG-200 model. First, please check the power supply status at the installation site. The machine requires 220V power."
    },
)
memory.save_context(
    inputs={"human": "I've checked the power. What's the next step?"},
    outputs={
        "ai": "Good. Next, please place the machine on a flat and stable surface. Then, proceed with cable connections according to the provided user manual."
    },
)
memory.save_context(
    inputs={"human": "How do I make the connections?"},
    outputs={
        "ai": "Please refer to page 5 of the manual. There are detailed instructions for cable connections. If you have any difficulties with this process, I'll be happy to help further."
    },
)
memory.save_context(
    inputs={"human": "What should I do after the installation is complete?"},
    outputs={
        "ai": "Once the installation is complete, please turn on the power and perform the initial operation test. The test procedure is explained on page 10 of the manual. If there are any issues with the machine or if you need additional support, please don't hesitate to contact us."
    },
)
memory.save_context(
    inputs={"human": "Thank you, this has been very helpful!"},
    outputs={
        "ai": "We're always ready to help. If you have any additional questions or need support, please feel free to ask. Have a great day!"
    },
)
# Check the conversation history
memory.load_memory_variables({})["history"]
[HumanMessage(content='Thank you, this has been very helpful!', additional_kwargs={}, response_metadata={}),
     AIMessage(content="We're always ready to help. If you have any additional questions or need support, please feel free to ask. Have a great day!", additional_kwargs={}, response_metadata={})]

Setting Maximum Token Length to 150

Let's check how the conversation is stored when we set the maximum token length to 150.

# Memory configuration
memory = ConversationTokenBufferMemory(
    llm=llm,
    max_token_limit=150,
    return_messages=True,  # Limit maximum token length to 150
)
# Add arbitrary conversations
memory.save_context(
    inputs={
        "human": "Hello, I recently purchased a machine tool from your company. Could you tell me how to install it?"
    },
    outputs={
        "ai": "Hello! Thank you for your purchase. Could you please tell me the machine model number?"
    },
)
memory.save_context(
    inputs={"human": "Yes, the model number is XG-200."},
    outputs={
        "ai": "Thank you. I'll help you with the installation guide for the XG-200 model. First, please check the power supply status at the installation site. The machine requires 220V power."
    },
)
memory.save_context(
    inputs={"human": "I've checked the power. What's the next step?"},
    outputs={
        "ai": "Good. Next, please place the machine on a flat and stable surface. Then, proceed with cable connections according to the provided user manual."
    },
)
memory.save_context(
    inputs={"human": "How do I make the connections?"},
    outputs={
        "ai": "Please refer to page 5 of the manual. There are detailed instructions for cable connections. If you have any difficulties with this process, I'll be happy to help further."
    },
)
memory.save_context(
    inputs={"human": "What should I do after the installation is complete?"},
    outputs={
        "ai": "Once the installation is complete, please turn on the power and perform the initial operation test. The test procedure is explained on page 10 of the manual. If there are any issues with the machine or if you need additional support, please don't hesitate to contact us."
    },
)
memory.save_context(
    inputs={"human": "Thank you, this has been very helpful!"},
    outputs={
        "ai": "We're always ready to help. If you have any additional questions or need support, please feel free to ask. Have a great day!"
    },
)
# Check the conversation history
memory.load_memory_variables({})["history"]
[HumanMessage(content='What should I do after the installation is complete?', additional_kwargs={}, response_metadata={}),
     AIMessage(content="Once the installation is complete, please turn on the power and perform the initial operation test. The test procedure is explained on page 10 of the manual. If there are any issues with the machine or if you need additional support, please don't hesitate to contact us.", additional_kwargs={}, response_metadata={}),
     HumanMessage(content='Thank you, this has been very helpful!', additional_kwargs={}, response_metadata={}),
     AIMessage(content="We're always ready to help. If you have any additional questions or need support, please feel free to ask. Have a great day!", additional_kwargs={}, response_metadata={})]

Set up the environment. You may refer to for more details.

You can checkout the for more details.

LangChain Python API Reference > langchain: 0.3.13 > memory > ConversationTokenBufferMemory
Environment Setup
langchain-opentutorial
Kenny Jung
Kenny Jung
Wooseok Jeong
JeongGi Park
Juni Lee
LangChain Open Tutorial
Overview
Environment Setup
Limiting Maximum Token Length to 50
Setting Maximum Token Length to 150