LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Setting up a LangSmith trace
  • Project-Level Tracking
  • Detailed Step-by-Step Tracking for a Single Execution
  • Using LangSmith tracking
  • Get a LangSmith API Key
  • Setting the LangSmith key in .env
  • Enable tracking in your Jupyter notebook or code
  1. 01-Basic

LangSmith Tracking Setup

PreviousOpenAI API Key Generation and Testing GuideNextUsing the OpenAI API (GPT-4o Multimodal)

Last updated 28 days ago

  • Author:

  • Peer Review: ,

  • Proofread :

  • This is a part of

Overview

This tutorial covers how to set up and use LangSmith, a powerful platform for developing, monitoring, and testing LLM applications.LangSmith provides comprehensive tracking capabilities that are essential for understanding and optimizing your LLM applications.

LangSmith tracking helps you monitor:

  • Token usage and associated costs

  • Execution time and performance metrics

  • Error rates and unexpected behaviors

  • Agent interactions and chain operations

In this tutorial, we'll walk through the process of setting up LangSmith tracking and integrating it with your LangChain applications.

Table of Contents

References


Setting up a LangSmith trace

LangSmith is a platform for developing, monitoring, and testing LLM applications. If you're starting a project or learning LangChain, LangSmith is a must-have to get set up and running.

Project-Level Tracking

At the project level, you can check execution counts, error rates, token usage, and billing information.

When you click on a project, all executed Runs appear.

Detailed Step-by-Step Tracking for a Single Execution

After a single execution, it records not only the search results of retrieved documents but also detailed logs of GPT's input and output content. Therefore, it helps you determine whether to change the search algorithm or modify prompts after reviewing the searched content.

Moreover, at the top, it shows the time taken for a single Run (about 30 seconds) and tokens used (5,104), and when you hover over the tokens, it displays the billing amount.

Using LangSmith tracking

Using traces is very simple.

Get a LangSmith API Key

  1. Go to https://smith.langchain.com/ and sign up.

  2. After signing up, you will need to verify your email.

  3. Click the left cog (Setting) - center "Personal" - "Create API Key" to get an API key.

Set environment variables is in the .env file.

Copy the contents of .env_sample and load it into your .env with the key you set.

from dotenv import load_dotenv

load_dotenv(override=True)
True

In Description, enter a description that makes sense to you and click the Create API Key button.

Copy the generated key and proceed to the next step.

(Caution!) Copy the generated key somewhere safe so that it doesn't leak.

Setting the LangSmith key in .env

First, enter the key you received from LangSmith and your project information in the .env file.

  • LANGCHAIN_TRACING_V2: Set to "true" to start tracking.

  • LANGCHAIN_ENDPOINT: https://api.smith.langchain.com (Do not modify this value).

  • LANGCHAIN_API_KEY: Enter the key you received in the previous step.

  • LANGCHAIN_PROJECT: Specify a project name to group and trace all runs under that project group.

Enable tracking in your Jupyter notebook or code

Enabling tracking is very simple. All you need to do is set an environment variable.

Copy the contents of .env_sample and load it into your .env with the key you set

%%capture --no-stderr
%pip install python-dotenv
from dotenv import load_dotenv

load_dotenv(override=True)
True

As long as your traces are enabled and your API key and project name are set correctly, tracking will work properly.

However, if you want to change the project name or change the tracking, you can do so with the code below.

import os

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"] = "<LangChain Project Name>"
os.environ["LANGCHAIN_API_KEY"] = "<LangChain API KEY>"

create-api-key
OpenAI API Pricing
Token Usage Guide
LangChain Python API Reference
JeongGi Park
MinJi Kang
Wooseok Jeong
Q0211
LangChain Open Tutorial
Overview
Setting up a LangSmith trace
Using LangSmith tracking
Enable tracking in your Jupyter notebook or code
project-level-tracking
project-level-tracking-detail
detailed-step-by-step-tracking
get-api-key
copy-api-key
setting-api-key