LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • AgentExecutor
  1. 15-Agent

Iteration-human-in-the-loop

PreviousTool Calling Agent with More LLM ModelsNextAgentic RAG

Last updated 28 days ago

  • Author:

  • Peer Review:

  • Proofread :

  • This is a part of

Overview

This tutorial expands on methods for controlling agent execution, including how to manage repetitions of the agent's execution process and incorporate receiving user input to determine whether to proceed during intermediate steps.

A process, known as "human-in-the-loop", enables you to repeat agent steps or prompt the user for input whether to continue during the agent's execution process or not.

The iter() method creates an iterator that allows you this step-by-step control during the agent's execution process.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

Load sample text and output the content.

%%capture --no-stderr
%pip install langchain-opentutorial
    [notice] A new release of pip is available: 24.2 -> 24.3.1
    [notice] To update, run: python.exe -m pip install --upgrade pip
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain",
        "langchain_core",
        "langchain_community",
        "load_dotenv",
        "langchain_openai",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "Iteration-human-in-the-loop",  # title
    }
)
Environment variables have been set successfully.

You can alternatively set OPENAI_API_KEY in .env file and load it.

[Note] This is not necessary if you've already set OPENAI_API_KEY in previous steps.

# Configuration File for Managing API Keys as Environment Variables
from dotenv import load_dotenv

# Load API Key Information
load_dotenv(override=True)
True

In the previous tutorial, we leveraged LangChain's agent components:

  • Agent: The core component responsible for decision-making.

  • Tools: The collection of functionalities that the agent can use.

  • AgentExecutor: The component that manages the execution of the agent.

This time, we will create an iterator that processes the execution steps by accepting user input during the intermediate stages.

First, define the tool.

from langchain.agents import tool


@tool
def add_function(a: float, b: float) -> float:
    """Adds two numbers together."""

    return a + b

Next, define an agent that uses add_function for additional calculations.

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
from langchain.agents import create_tool_calling_agent, AgentExecutor

# Define tools
tools = [add_function]

# Create LLM
gpt = ChatOpenAI(model="gpt-4o-mini")

# Create prompt
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant."
            "Please avoid LaTeX-style formatting and use plain symbols.",
        ),
        ("human", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ]
)

# Create Agent
gpt_agent = create_tool_calling_agent(gpt, tools, prompt)

# Create AgentExecutor
agent_executor = AgentExecutor(
    agent=gpt_agent,
    tools=tools,
    verbose=False,
    max_iterations=10,
    handle_parsing_errors=True,
)

AgentExecutor

The iter() method creates an iterator (AgentExecutorIterator) object.

Function Description

  • It allows you to step through the agent's execution process.

  • It provides sequential access to each execution step the agent takes until it reaches the final output.

Key Features

  • Step-by-step execution access : Enables you to examine the agent's execution process step-by-step.

Flow Overview

Let's consider the addition calculation \"114.5 + 121.2 + 34.2 + 110.1\" as an example. The steps in this calculation would be executed as follows:

  1. 114.5 + 121.2 = 235.7

  2. 235.7 + 34.2 = 269.9

  3. 269.9 + 110.1 = 380.0

Using the iter() method, you can observe each step in these calculation steps individually.

During this execution, the system can be configured to display intermediate calculation results to the user and prompt them to confirm whether they want to continue the process. (Human-in-the-loop)

If the user provides any input other than 'y', the iteration will halt.

In practice, some calculations might be performed in parallel. For example, while 114.5 + 121.2 = 235.7 is being calculated, 34.2 + 110.1 = 144.3 might also be computed.

Then, the final result (235.7 + 144.3 = 380.0) would then be calculated in a subsequent step.

This process can be observed by setting verbose=True when creating the AgentExecutor.

# Define the user input question
question = "What is the result of 114.5 + 121.2 + 34.2 + 110.1?"


# Flag to track if the calculation is stopped
calculation_stopped = False

# Use AgentExecutor's iter() method to run step-by-step execution
for step in agent_executor.iter({"input": question}):
    # Access each calculation step through intermediate_step
    if output := step.get("intermediate_step"):
        action, value = output[0]

        # Print the result of each calculation step
        if action.tool == "add_function":
            print(f"Tool Name: {action.tool}, Execution Result: {value}")

        # Ask the user whether to continue
        while True:
            _continue = input("Do you want to continue? (y/n):").strip().lower()
            if _continue in ["y", "n"]:
                if _continue == "n":
                    print(f"Calculation stopped. Last computed result: {value}")
                    calculation_stopped = True  # Set flag to indicate calculation stop
                    break  # Break from the loop to stop calculation
                break  # Break the inner while loop after valid input
            else:
                print("Invalid input! Please enter 'y' or 'n'.")

    # Exit the iteration if the calculation is stopped
    if calculation_stopped:
        break

# Print the final result
if "output" in step:
    print(f"Final result: {step['output']}")
else:
    print(f"Final result (from last computation): {value}")
Tool Name: add_function, Execution Result: 235.7
    Tool Name: add_function, Execution Result: 380.0
    Final result: The result of 114.5 + 121.2 + 34.2 + 110.1 is 380.0.

Set up the environment. You may refer to for more details.

You can checkout the for more details.

Environment Setup
langchain-opentutorial
Wonyoung Lee
Chaeyoon Kim
LangChain Open Tutorial
LangChain ChatOpenAI API reference
LangChain AgentExecutor API reference
LangSmith API reference
Overview
Environement Setup
AgentExecutor