DatetimeOutputParser

Overview

The DatetimeOutputParser is an output parser that generates structured outputs in the form of datetime objects.

By converting the outputs of LLMs into datetime objects, it enables more systematic and consistent processing of date and time data, making it useful for data processing and analysis.

This tutorial demonstrates how to use the DatetimeOutputParser to:

  1. Set up and initialize the parser for datetime generation

  2. Convert a datetime object to a string

Table of Contents

References


Environment Setup

Set up the environment. You may refer to Environment Setup for more details.

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

  • You can checkout the langchain-opentutorial for more details.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langchain",
        "langchain_core",
        "langchain_openai",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "06-DatetimeOutputParser",
    }
)
Environment variables have been set successfully.

You can alternatively set OPENAI_API_KEY in .env file and load it.

[Note] This is not necessary if you've already set OPENAI_API_KEY in previous steps.

from dotenv import load_dotenv

load_dotenv(override=True)
False

Using the DatetimeOutputParser

If you need to generate output in the form of a date or time, the DatetimeOutputParser from LangChain simplifies the process.

The format of the DatetimeOutputParser can be specified by referring to the table below.

Format Code
Description
Example

%Y

4-digit year

2024

%y

2-digit year

24

%m

2-digit month

07

%d

2-digit day

04

%H

24-hour format hour

14

%I

12-hour format hour

02

%p

AM or PM

PM

%M

2-digit minute

45

%S

2-digit second

08

%f

Microsecond (6 digits)

000123

%z

UTC offset

+0900

%Z

Timezone name

KST

%a

Abbreviated weekday

Thu

%A

Full weekday name

Thursday

%b

Abbreviated month

Jul

%B

Full month name

July

%c

Full date and time

Thu Jul 4 14:45:08 2024

%x

Full date

07/04/24

%X

Full time

14:45:08

from langchain.output_parsers import DatetimeOutputParser
from langchain_core.prompts import PromptTemplate

# Initialize the output parser
output_parser = DatetimeOutputParser()

# Specify date format
date_format = "%Y-%m-%d"
output_parser.format = date_format

# Get format instructions
format_instructions = output_parser.get_format_instructions()

# Create answer template for user questions
template = """Answer the users question:\n\n#Format Instructions: \n{format_instructions}\n\n#Question: \n{question}\n\n#Answer:"""

# Create a prompt from the template
prompt = PromptTemplate.from_template(
    template,
    partial_variables={
        "format_instructions": format_instructions,
    },  # Use parser's format instructions
)

print(format_instructions)
print("-----------------------------------------------\n")
print(prompt)
Write a datetime string that matches the following pattern: '%Y-%m-%d'.
    
    Examples: 0594-05-12, 0088-08-25, 0371-10-02
    
    Return ONLY this string, no other words!
    -----------------------------------------------
    
    input_variables=['question'] input_types={} partial_variables={'format_instructions': "Write a datetime string that matches the following pattern: '%Y-%m-%d'.\n\nExamples: 0594-05-12, 0088-08-25, 0371-10-02\n\nReturn ONLY this string, no other words!"} template='Answer the users question:\n\n#Format Instructions: \n{format_instructions}\n\n#Question: \n{question}\n\n#Answer:'
from langchain_openai import ChatOpenAI

model = ChatOpenAI(temperature=0, model_name="gpt-4o-mini")

# Combine the prompt, chat model, and output parser into a chain
chain = prompt | model | output_parser

# Call the chain to get an answer to the question
output = chain.invoke({"question": "The year Google was founded"})

print(output)
print(type(output))
1998-09-04 00:00:00
    
# Convert the result to a string
output.strftime(date_format)
'1998-09-04'

Using DatetimeOutputParser in astream

Refer to the user-defined generator to create a generator function.

Let's create a simple example that converts astream output to datetime objects using a generator function.

from langchain_core.output_parsers.string import StrOutputParser
from langchain.output_parsers.datetime import DatetimeOutputParser
from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai.chat_models.base import ChatOpenAI
import datetime
from typing import AsyncIterator, List

# Initialize the output parser
output_parser = DatetimeOutputParser()

# Specify date format
date_format = "%Y-%m-%d"
output_parser.format = date_format

# Get format instructions
format_instructions = output_parser.get_format_instructions()

# Create answer template for user questions
template = (
    "Answer the users question:\n\n"
    "#Format Instructions: \n{format_instructions}\n"
    "Write a comma-separated list of 5 founding years of companies similar to: {company}"
)

# Create a prompt from the template
prompt = PromptTemplate.from_template(
    template,
    partial_variables={"format_instructions": format_instructions},
)

# Initialize the ChatOpenAI model with temperature set to 0.0
model = ChatOpenAI(temperature=0.0, model_name="gpt-4o-mini")

# Create a chain combining the prompt, model, and string output parser
str_chain = prompt | model | StrOutputParser()


# Define an asynchronous function to convert strings to datetime objects
async def convert_strings_to_datetime(
    input: AsyncIterator[str],
) -> AsyncIterator[List[datetime.datetime]]:
    buffer = ""
    async for chunk in input:
        buffer += chunk
        while "," in buffer:
            comma_index = buffer.index(",")
            date_str = buffer[:comma_index].strip()
            date_obj = output_parser.parse(date_str)  # Convert to datetime object
            yield [date_obj]
            buffer = buffer[comma_index + 1 :]
    date_str = buffer.strip()
    if date_str:
        date_obj = output_parser.parse(
            date_str
        )  # Convert remaining buffer to datetime object
        yield [date_obj]


# Connect the str_chain and convert_strings_to_datetime in a pipeline
alist_chain = str_chain | convert_strings_to_datetime
# Use async for loop to stream data.
async for chunk in alist_chain.astream({"company": "Google"}):
    # Print each chunk and flush the buffer.
    print(chunk, flush=True)
[datetime.datetime(1998, 9, 4, 0, 0)]
    [datetime.datetime(2004, 2, 4, 0, 0)]
    [datetime.datetime(2003, 2, 4, 0, 0)]
    [datetime.datetime(2001, 3, 1, 0, 0)]
    [datetime.datetime(1994, 3, 1, 0, 0)]

Last updated