LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Using the DatetimeOutputParser
  • Using DatetimeOutputParser in astream
  1. 03-OutputParser

DatetimeOutputParser

PreviousPandasDataFrameOutputParserNextEnumOutputParser

Last updated 28 days ago

  • Author:

  • Peer Review : ,

  • Proofread :

  • This is a part of

Overview

The DatetimeOutputParser is an output parser that generates structured outputs in the form of datetime objects.

By converting the outputs of LLMs into datetime objects, it enables more systematic and consistent processing of date and time data, making it useful for data processing and analysis.

This tutorial demonstrates how to use the DatetimeOutputParser to:

  1. Set up and initialize the parser for datetime generation

  2. Convert a datetime object to a string

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langchain",
        "langchain_core",
        "langchain_openai",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "06-DatetimeOutputParser",
    }
)
Environment variables have been set successfully.

You can alternatively set OPENAI_API_KEY in .env file and load it.

[Note] This is not necessary if you've already set OPENAI_API_KEY in previous steps.

from dotenv import load_dotenv

load_dotenv(override=True)
False

Using the DatetimeOutputParser

If you need to generate output in the form of a date or time, the DatetimeOutputParser from LangChain simplifies the process.

The format of the DatetimeOutputParser can be specified by referring to the table below.

Format Code
Description
Example

%Y

4-digit year

2024

%y

2-digit year

24

%m

2-digit month

07

%d

2-digit day

04

%H

24-hour format hour

14

%I

12-hour format hour

02

%p

AM or PM

PM

%M

2-digit minute

45

%S

2-digit second

08

%f

Microsecond (6 digits)

000123

%z

UTC offset

+0900

%Z

Timezone name

KST

%a

Abbreviated weekday

Thu

%A

Full weekday name

Thursday

%b

Abbreviated month

Jul

%B

Full month name

July

%c

Full date and time

Thu Jul 4 14:45:08 2024

%x

Full date

07/04/24

%X

Full time

14:45:08

from langchain.output_parsers import DatetimeOutputParser
from langchain_core.prompts import PromptTemplate

# Initialize the output parser
output_parser = DatetimeOutputParser()

# Specify date format
date_format = "%Y-%m-%d"
output_parser.format = date_format

# Get format instructions
format_instructions = output_parser.get_format_instructions()

# Create answer template for user questions
template = """Answer the users question:\n\n#Format Instructions: \n{format_instructions}\n\n#Question: \n{question}\n\n#Answer:"""

# Create a prompt from the template
prompt = PromptTemplate.from_template(
    template,
    partial_variables={
        "format_instructions": format_instructions,
    },  # Use parser's format instructions
)

print(format_instructions)
print("-----------------------------------------------\n")
print(prompt)
Write a datetime string that matches the following pattern: '%Y-%m-%d'.
    
    Examples: 0594-05-12, 0088-08-25, 0371-10-02
    
    Return ONLY this string, no other words!
    -----------------------------------------------
    
    input_variables=['question'] input_types={} partial_variables={'format_instructions': "Write a datetime string that matches the following pattern: '%Y-%m-%d'.\n\nExamples: 0594-05-12, 0088-08-25, 0371-10-02\n\nReturn ONLY this string, no other words!"} template='Answer the users question:\n\n#Format Instructions: \n{format_instructions}\n\n#Question: \n{question}\n\n#Answer:'
from langchain_openai import ChatOpenAI

model = ChatOpenAI(temperature=0, model_name="gpt-4o-mini")

# Combine the prompt, chat model, and output parser into a chain
chain = prompt | model | output_parser

# Call the chain to get an answer to the question
output = chain.invoke({"question": "The year Google was founded"})

print(output)
print(type(output))
1998-09-04 00:00:00
    
# Convert the result to a string
output.strftime(date_format)
'1998-09-04'

Using DatetimeOutputParser in astream

Let's create a simple example that converts astream output to datetime objects using a generator function.

from langchain_core.output_parsers.string import StrOutputParser
from langchain.output_parsers.datetime import DatetimeOutputParser
from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai.chat_models.base import ChatOpenAI
import datetime
from typing import AsyncIterator, List

# Initialize the output parser
output_parser = DatetimeOutputParser()

# Specify date format
date_format = "%Y-%m-%d"
output_parser.format = date_format

# Get format instructions
format_instructions = output_parser.get_format_instructions()

# Create answer template for user questions
template = (
    "Answer the users question:\n\n"
    "#Format Instructions: \n{format_instructions}\n"
    "Write a comma-separated list of 5 founding years of companies similar to: {company}"
)

# Create a prompt from the template
prompt = PromptTemplate.from_template(
    template,
    partial_variables={"format_instructions": format_instructions},
)

# Initialize the ChatOpenAI model with temperature set to 0.0
model = ChatOpenAI(temperature=0.0, model_name="gpt-4o-mini")

# Create a chain combining the prompt, model, and string output parser
str_chain = prompt | model | StrOutputParser()


# Define an asynchronous function to convert strings to datetime objects
async def convert_strings_to_datetime(
    input: AsyncIterator[str],
) -> AsyncIterator[List[datetime.datetime]]:
    buffer = ""
    async for chunk in input:
        buffer += chunk
        while "," in buffer:
            comma_index = buffer.index(",")
            date_str = buffer[:comma_index].strip()
            date_obj = output_parser.parse(date_str)  # Convert to datetime object
            yield [date_obj]
            buffer = buffer[comma_index + 1 :]
    date_str = buffer.strip()
    if date_str:
        date_obj = output_parser.parse(
            date_str
        )  # Convert remaining buffer to datetime object
        yield [date_obj]


# Connect the str_chain and convert_strings_to_datetime in a pipeline
alist_chain = str_chain | convert_strings_to_datetime
# Use async for loop to stream data.
async for chunk in alist_chain.astream({"company": "Google"}):
    # Print each chunk and flush the buffer.
    print(chunk, flush=True)
[datetime.datetime(1998, 9, 4, 0, 0)]
    [datetime.datetime(2004, 2, 4, 0, 0)]
    [datetime.datetime(2003, 2, 4, 0, 0)]
    [datetime.datetime(2001, 3, 1, 0, 0)]
    [datetime.datetime(1994, 3, 1, 0, 0)]

Set up the environment. You may refer to for more details.

You can checkout the for more details.

Refer to the to create a generator function.

LangChain DatetimeOutputParser
LangChain ChatOpenAI API reference
Environment Setup
langchain-opentutorial
user-defined generator
Donghak Lee
JaeHo Kim
ranian963
Two-Jay
LangChain Open Tutorial
Overview
Environment Setup
Using the DatetimeOutputParser
Using DatetimeOutputParser in astream