LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Using JsonOutputParser with Pydantic
  • Using JsonOutputParser without Pydantic
  1. 03-OutputParser

JsonOutputParser

PreviousStructured Output ParserNextPandasDataFrameOutputParser

Last updated 28 days ago

  • Author:

  • Peer Review : ,

  • Proofread :

  • This is a part of

Overview

This tutorial covers the implementation of the JsonOutputParser.JsonOutputParser is a tool that allows users to specify the desired JSON schema. It is designed to enable an LLM(Large Language Model) to query data and return results in JSON format that adheres to the specified schema. To ensure that the LLM processes data accurately and efficiently, generating JSON in the desired format, the model must have sufficient capacity (e.g., intelligence). For instance, the llama-70B model has a larger capacity compared to the llama-8B model, making it more suitable for handling complex data.

[Note]

JSON (JavaScript Object Notation) is a lightweight data interchange format used for storing and structuring data. It plays a crucial role in web development and is widely used for communication between servers and clients. JSON is based on text that is easy to read and simple for machines to parse and generate.

JSON data consists of key-value pairs. Here, the "key" is a string, and the "value" can be various data types. JSON has two primary structures:

  • Object: A collection of key-value pairs enclosed in curly braces { }. Each key is associated with its value using a colon ( : ), and multiple key-value pairs are separated by commas ( , ).

  • Array: An ordered list of values enclosed in square brackets [ ]. Values within an array are separated by commas ( , ).

{
  "name": "John Doe",
  "age": 30,
  "is_student": false,
  "skills": ["Java", "Python", "JavaScript"],
  "address": {
    "street": "123 Main St",
    "city": "Anytown"
  }
}

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain",
        "langchain_core",
        "langchain_openai",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "04-JsonOutputParser",
    }
)
Environment variables have been set successfully.

You can alternatively set OPENAI_API_KEY in .env file and load it. [Note] This is not necessary if your've already set OPENAI_API_KEY in previous steps.

from dotenv import load_dotenv

load_dotenv(override=True)
True

Using JsonOutputParser with Pydantic

If you need to generate output in JSON format, you can easily implement it using LangChain's JsonOutputParser. There are 2 ways to generate output in JSON format:

  • Using Pydantic

  • Not using Pydantic

Follow the steps below to implement it:

Start by importing the necessary modules.

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
# Create an OpenAI object
model = ChatOpenAI(temperature=0, model_name="gpt-4o")

Define the output data schema format.

# Use Pydantic to define the data schema for the output format.
class Topic(BaseModel):
    description: str = Field(description="A concise description of the topic")
    hashtags: str = Field(description="Keywords in hashtag format (at least 2)")

Set up the parser using JsonOutputParser and inject instructions into the prompt template.

# Write your question
question = "Please explain the severity of global warming."

# Set up the parser and inject the instructions into the prompt template.
parser = JsonOutputParser(pydantic_object=Topic)
print(parser.get_format_instructions())
The output should be formatted as a JSON instance that conforms to the JSON schema below.
    
    As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
    the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.
    
    Here is the output schema:
    ```
    {"properties": {"description": {"description": "A concise description of the topic", "title": "Description", "type": "string"}, "hashtags": {"description": "Keywords in hashtag format (at least 2)", "title": "Hashtags", "type": "string"}}, "required": ["description", "hashtags"]}
    ```
# Set up the prompt template
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a friendly AI assistant. Answer questions concisely."),
        ("user", "#Format: {format_instructions}\n\n#Question: {question}"),
    ]
)

prompt = prompt.partial(format_instructions=parser.get_format_instructions())

# Combine the prompt, model, and JsonOutputParser into a chain
chain = prompt | model | parser

# Run the chain with your question
answer = chain.invoke({"question": question})
# Check the type.
type(answer)
dict
# Output the answer object.
answer
{'description': "Global warming is a critical environmental issue characterized by the increase in Earth's average surface temperature due to rising levels of greenhouse gases. It leads to severe weather changes, rising sea levels, and impacts on biodiversity and human life.",
     'hashtags': '#GlobalWarming #ClimateChange #EnvironmentalImpact'}

Using JsonOutputParser without Pydantic

You can generate output in JSON format without Pydantic.

Follow the steps below to implement it:

# Write your question
question = "Please provide information about global warming. Include the explanation in description and the related keywords in `hashtags`."

# Initialize JsonOutputParser
parser = JsonOutputParser()

# Set up the prompt template
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a friendly AI assistant. Answer questions concisely."),
        ("user", "#Format: {format_instructions}\n\n#Question: {question}"),
    ]
)

# Inject instruction to prompt
prompt = prompt.partial(format_instructions=parser.get_format_instructions())

# Combine the prompt, model, and JsonOutputParser into a chain
chain = prompt | model | parser

# Run the chain with your question
response = chain.invoke({"question": question})
print(response)
{'description': "Global warming refers to the long-term increase in Earth's average surface temperature due to human activities, primarily the emission of greenhouse gases like carbon dioxide, methane, and nitrous oxide. These emissions result from burning fossil fuels, deforestation, and industrial processes, leading to the greenhouse effect, where heat is trapped in the atmosphere. This warming has significant impacts on weather patterns, sea levels, and ecosystems, contributing to climate change and posing risks to biodiversity and human societies.", 'hashtags': ['#GlobalWarming', '#ClimateChange', '#GreenhouseGases', '#CarbonEmissions', '#FossilFuels', '#Deforestation', '#Sustainability', '#EnvironmentalImpact']}

Set up the environment. You may refer to for more details.

You can checkout the for more details.

JsonOutputParser
Environment Setup
langchain-opentutorial
Overview
Environment Setup
Using JsonOutputParser with Pydantic
Using JsonOutputParser without Pydantic
Jaehun Choi
Jeongeun Lim
frimer
BokyungisaGod
LangChain Open Tutorial