LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Implementing the CommaSeparatedListOutputParser
  • 1. Importing Required Modules
  • 2. Creating the Prompt Template
  • 3. Integrating with ChatOpenAI and Running the Chain
  • 4. Accessing Data with Python Indexing
  • Using Streamed Outputs
  1. 03-OutputParser

CommaSeparatedListOutputParser

PreviousPydanticOutputParserNextStructured Output Parser

Last updated 28 days ago

  • Author:

  • Peer Review : , ,

  • Proofread :

  • This is a part of

Overview

The CommaSeparatedListOutputParser is a specialized output parser in LangChain designed for generating structured outputs in the form of comma-separated lists.

It simplifies the process of extracting and presenting data in a clear and concise list format, making it particularly useful for organizing information such as data points, names, items, or other structured values. By leveraging this parser, users can enhance data clarity, ensure consistent formatting, and improve workflow efficiency, especially in applications where structured outputs are essential.

This tutorial demonstrates how to use the CommaSeparatedListOutputParser to:

  1. Set up and initialize the parser for generating comma-separated lists

  2. Integrate it with a prompt template and language model

  3. Process structured outputs iteratively using streaming mechanisms

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain",
        "langchain_openai",
        "langchain_community",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "02-CommaSeparatedListOutputParser",
    }
)
Environment variables have been set successfully.

You can alternatively set OPENAI_API_KEY in .env file and load it.

[Note] This is not necessary if you've already set OPENAI_API_KEY in previous steps.

from dotenv import load_dotenv

load_dotenv()
True

Implementing the CommaSeparatedListOutputParser

If you need to generate outputs in the form of a comma-separated list, the CommaSeparatedListOutputParser from LangChain simplifies the process. Below is a step-by-step implementation:

1. Importing Required Modules

Start by importing the necessary modules and initializing the CommaSeparatedListOutputParser. Retrieve the formatting instructions from the parser to guide the output structure.

from langchain_core.output_parsers import CommaSeparatedListOutputParser

# Initialize the output parser
output_parser = CommaSeparatedListOutputParser()

# Retrieve format instructions for the output parser
format_instructions = output_parser.get_format_instructions()
print(format_instructions)
Your response should be a list of comma separated values, eg: `foo, bar, baz` or `foo,bar,baz`

2. Creating the Prompt Template

Define a PromptTemplate that dynamically generates a list of items. The placeholder subject will be replaced with the desired topic during execution.

from langchain_core.prompts import PromptTemplate

# Define the prompt template
prompt = PromptTemplate(
    template="List five {subject}.\n{format_instructions}",
    input_variables=["subject"],  # 'subject' will be dynamically replaced
    partial_variables={
        "format_instructions": format_instructions
    },  # Use parser's format instructions
)
print(prompt)
input_variables=['subject'] input_types={} partial_variables={'format_instructions': 'Your response should be a list of comma separated values, eg: `foo, bar, baz` or `foo,bar,baz`'} template='List five {subject}.\n{format_instructions}'

3. Integrating with ChatOpenAI and Running the Chain

Combine the PromptTemplate, ChatOpenAI model, and CommaSeparatedListOutputParser into a chain. Finally, run the chain with a specific subject to produce results.

from langchain_openai import ChatOpenAI

# Initialize the ChatOpenAI model
model = ChatOpenAI(temperature=0)

# Combine the prompt, model, and output parser into a chain
chain = prompt | model | output_parser

# Run the chain with a specific subject
result = chain.invoke({"subject": "famous landmarks in South Korea"})
print(result)
['Gyeongbokgung Palace', 'N Seoul Tower', 'Bukchon Hanok Village', 'Seongsan Ilchulbong Peak', 'Haeundae Beach']

4. Accessing Data with Python Indexing

Since the CommaSeparatedListOutputParser automatically formats the output as a Python list, you can easily access individual elements using indexing.

# Accessing specific elements using Python indexing
print("First Landmark:", result[0])
print("Second Landmark:", result[1])
print("Last Landmark:", result[-1])
First Landmark: Gyeongbokgung Palace
    Second Landmark: N Seoul Tower
    Last Landmark: Haeundae Beach

Using Streamed Outputs

For larger outputs or real-time feedback, you can process the results using the stream method. This allows you to handle data piece by piece as it is generated.

# Iterate through the streamed output for a subject
for output in chain.stream({"subject": "famous landmarks in South Korea"}):
    print(output)
['Gyeongbokgung Palace']
    ['N Seoul Tower']
    ['Bukchon Hanok Village']
    ['Seongsan Ilchulbong Peak']
    ['Haeundae Beach']

Set up the environment. You may refer to for more details.

You can checkout the for more details.

LangChain ChatOpenAI API reference
LangChain Core Output Parsers
Python List Tutorial
Environment Setup
langchain-opentutorial
Junseong Kim
Teddy Lee
stsr1284
brian604
BokyungisaGod
LangChain Open Tutorial
Overview
Environment Setup
Implementing the CommaSeparatedListOutputParser
Using Streamed Outputs