LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • API Key Configuration
  • Upload Generated Dataset
  • Upload to HuggingFace Dataset
  1. 16-Evaluations

HF-Upload

PreviousEvaluation using RAGASNextLangSmith-Dataset

Last updated 26 days ago

  • Author:

  • Design:

  • Peer Review :

  • Proofread:

  • This is a part of

Overview

The process involves loading a local CSV file, converting it to a HuggingFace Dataset format, and uploading it to the Hugging Face Hub as a private dataset. This process allows for easy sharing and access of the dataset through the HuggingFace infrastructure.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

API Key Configuration

Once you have your API key, set it as the value for the variable HUGGINGFACEHUB_API_TOKEN .

%%capture --no-stderr
%pip install langchain-opentutorial
    [notice] A new release of pip is available: 24.3.1 -> 25.0.1
    [notice] To update, run: python.exe -m pip install --upgrade pip
# Install required packages
from langchain_opentutorial import package

package.install(
    ["datasets"],
    verbose=False,
    upgrade=False,
)

You can set API keys in a .env file or set them manually.

[Note] If you’re not using the .env file, no worries! Just enter the keys directly in the cell below, and you’re good to go.

from dotenv import load_dotenv
from langchain_opentutorial import set_env

# Attempt to load environment variables from a .env file; if unsuccessful, set them manually.
if not load_dotenv(override=True):
    set_env(
        {
            "LANGCHAIN_API_KEY": "",
            "LANGCHAIN_TRACING_V2": "true",
            "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
            "LANGCHAIN_PROJECT": "", # set the project name same as the title
            "HUGGINGFACEHUB_API_TOKEN": "",
        }
    )
from dotenv import load_dotenv

load_dotenv(override=True)
True

Upload Generated Dataset

Import the pandas library for data upload

import pandas as pd

df = pd.read_csv("data/ragas_synthetic_dataset.csv")
df.head()
user_input
reference_contexts
reference
synthesizer_name

0

Wht is an API?

["Agents\nThis combination of reasoning,\nlogi...

An API can be used by a model to make various ...

single_hop_specifc_query_synthesizer

1

What are the three essential components in an ...

['Agents\nWhat is an agent?\nIn its most funda...

The three essential components in an agent's c...

single_hop_specifc_query_synthesizer

2

What Chain-of-Thought do in agent model, how i...

['Agents\nFigure 1. General agent architecture...

Chain-of-Thought is a reasoning and logic fram...

single_hop_specifc_query_synthesizer

3

Waht is the DELETE method used for?

['Agents\nThe tools\nFoundational models, desp...

The DELETE method is a common web API method t...

single_hop_specifc_query_synthesizer

4

How do foundational components contribute to t...

['<1-hop>\n\nAgents\ncombining specialized age...

Foundational components contribute to the cogn...

NewMultiHopQuery

Upload to HuggingFace Dataset

Convert a Pandas DataFrame(df) to a Hugging Face Dataset and proceed with the upload.

from datasets import Dataset

# Convert pandas DataFrame to Hugging Face Dataset
dataset = Dataset.from_pandas(df)

# Check the dataset
print(dataset)
Dataset({
        features: ['user_input', 'reference_contexts', 'reference', 'synthesizer_name'],
        num_rows: 10
    })
from datasets import Dataset
import os

# Convert pandas DataFrame to Hugging Face Dataset
dataset = Dataset.from_pandas(df)

# Set dataset name (change to your desired name)
hf_username = "icarus1026"  # Your Hugging Face Username(ID)
dataset_name = f"{hf_username}/rag-synthetic-dataset"

# Upload dataset
dataset.push_to_hub(
    dataset_name,
    private=True,  # Set private=False for a public dataset
    split="test_v1",  # Enter dataset split name
    token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
)
Pushing dataset shards to the dataset hub:   0%|          | 0/1 [00:00
No files have been modified since last commit. Skipping to prevent empty commit.
[Note] The Dataset Viewer may take some time to display.

Set up the environment. You may refer to for more details.

You can checkout the for more details.

To use HuggingFace Dataset , you need to .

Environment Setup
langchain-opentutorial
obtain a HuggingFace write token
Sun Hyoung Lee
LangChain Open Tutorial
Huggingface / Share a dataset to the Hub
Overview
Environement Setup
Upload Generated Dataset
Upload to HuggingFace Dataset