LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Creating a Chain that Remembers Previous Conversations
  • Key Roles
  • Usage
  • Creating a Chain to Record Conversations (chain_with_history)
  1. 05-Memory

Conversation With History

PreviousMemory Using SQLiteNext06-DocumentLoader

Last updated 28 days ago

  • Author: ,

  • Peer Review : , , ,

  • Proofread :

  • This is a part of

Overview

This tutorial covers how to create a multi-turn Chain that remembers previous conversations, using LangChain. It includes managing conversation history, defining a ChatPromptTemplate, and utilizing an LLM for chain creation. The conversation history is managed using chat_history.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    ["langchain_core", "langchain_community", "langchain_openai"],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "ConversationWithHistory",
    }
)
Environment variables have been set successfully.

Alternatively, environment variables can also be set using a .env file.

[Note]

  • This is not necessary if you've already set the environment variables in the previous step.

from dotenv import load_dotenv

load_dotenv()

Creating a Chain that Remembers Previous Conversations

MessagesPlaceholder is a class in LangChain used to handle conversation history. It is primarily utilized in chatbots or multi-turn conversation systems to store and reuse previous conversation content.

Key Roles

Inserting Conversation History :

  • Used to insert prior conversations (e.g., question-and-answer history) into the prompt.

  • This allows the model to understand the context of the conversation and generate appropriate responses.

Managing Variables :

  • Manages conversation history within the prompt using a specific key (e.g., chat_history).

  • It is linked to a user-defined variable name.

Usage

MessagesPlaceholder(variable_name="chat_history")

  • Here, chat_history is the variable name where conversation history is stored.

  • As the conversation progresses, chat_history is continually updated with pairs of questions and responses.

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser


# Define the prompt.
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a Question-Answering chatbot. Please provide answers to the given questions.",
        ),
        # Use "chat_history" as the key for conversation history without modifying it if possible.
        MessagesPlaceholder(variable_name="chat_history"),
        ("human", "#Question:\n{question}"),  # Use user input as a variable.
    ]
)

# Create the LLM.
llm = ChatOpenAI(model_name="gpt-4o")

# Create a basic chain.
chain = prompt | llm | StrOutputParser()

Creating a Chain to Record Conversations (chain_with_history)

In this step, we create a system that manages session-based conversation history and generates an executable chain.

  • Conversation History Management : The store dictionary saves and retrieves conversation history (ChatMessageHistory) by session ID. If a session does not exist, a new one is created.

  • Chain Execution : RunnableWithMessageHistory combines conversation history and the chain to generate responses based on user questions and conversation history. This structure is designed to effectively manage multi-turn conversations.

# A dictionary to store session history.
store = {}


# A function to retrieve session history based on the session ID.
def get_session_history(session_ids):
    print(f"[Conversation session ID]: {session_ids}")
    if session_ids not in store:  # When the session ID is not in the store.
        # Create a new ChatMessageHistory object and save it in the store.
        store[session_ids] = ChatMessageHistory()
    return store[session_ids]  # Return the session history for the given session ID.
chain_with_history = RunnableWithMessageHistory(
    chain,
    get_session_history,  # A function to retrieve session history.
    input_messages_key="question",  # The key where the user's question will be inserted into the template variable.
    history_messages_key="chat_history",  # The key for the message in the history.
)

Execute the first question.

chain_with_history.invoke(
    # Question input.
    {"question": "My name is Teddy."},
    # Record conversations based on the session ID.
    config={"configurable": {"session_id": "abc123"}},
)
[Conversation session ID]: abc123
"Hello, Teddy! Do you have a question or something specific you'd like to discuss?"

Execute the next question.

chain_with_history.invoke(
    # Question input.
    {"question": "What's my name?"},
    # Record conversations based on the session ID.
    config={"configurable": {"session_id": "abc123"}},
)
[Conversation session ID]: abc123
'Your name is Teddy.'

Below is a case where a new session is created when the session_id is different.

chain_with_history.invoke(
    # Question input.
    {"question": "What's my name?"},
    # Record conversations based on the session ID.
    config={"configurable": {"session_id": "abc1234"}},
)
[Conversation session ID]: abc1234
"I'm sorry, but I don't have access to personal information about you, including your name."

Set up the environment. You may refer to for more details.

You can checkout the for more details.

Environment Setup
langchain-opentutorial
3dkids
Joonha Jeon
Teddy Lee
Shinar12
Kenny Jung
Sunyoung Park (architectyou)
Juni Lee
LangChain Open Tutorial
LangChain: MessagesPlaceholder
LangChain: chatmessagehistory
LangChain: runnablewithmessagehistory
Overview
Environment Setup
Creating a Chain that Remembers Previous Conversations
Creating a Chain to Record Conversations