LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Ollama Install and Model Serving
  • Ollama User Guide
  • Identify Supported Embedding Models and Serving Model
  • Ollama Model Pull Guide
  • Model Load and Embedding
  • The similarity calculation results
  1. 08-Embedding

Ollama Embeddings With Langchain

PreviousUpstageNextLlamaCpp Embeddings With Langchain

Last updated 28 days ago

  • Author:

  • Peer Review : , , ,

  • Proofread :

  • This is a part of

Overview

This tutorial covers how to perform Text Embedding using Ollama and Langchain.

Ollama is an open-source project that allows you to easily serve models locally.

In this tutorial, we will create a simple example to measure the similarity between Documents and an input Query using Ollama and Langchain.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langchain_community",
        "langchain-ollama",
        "scikit-learn",
    ],
    verbose=False,
    upgrade=False,
)

Ollama Install and Model Serving

Ollama is an open-source project that makes it easy to run large language models(LLM) in a local environment. This tool allows users to download and run various LLMs with simple commands, enabling developers to experiment with and use AI models directly on their computers. Ollama is a tool with a user-friendly interface and fast performance, making AI development and experimentation more accessible and efficient.

Ollama User Guide

Identify Supported Embedding Models and Serving Model

👇 You can find the model in the hyperlink below.

Ollama Model Pull Guide

1. Search Models

2. Pull a Model

3. Verify the Model

Model Load and Embedding

Now that you have downloaded the model, let's load the model you downloaded and proceed with the embedding.

First, define Query and Documents

# Query
q = "Please tell me more about LangChain."

# Documents for Text Embedding
docs = [
    "Hi, nice to meet you.",
    "LangChain simplifies the process of building applications with large language models.",
    "The LangChain English tutorial is structured based on LangChain's official documentation, cookbook, and various practical examples to help users utilize LangChain more easily and effectively.",
    "LangChain simplifies the process of building applications with large-scale language models.",
    "Retrieval-Augmented Generation (RAG) is an effective technique for improving AI responses.",
]

Next, let's load the embedding model downloaded with Ollama using Langchain.

The OllamaEmbeddings class in langchain_community/embeddings.py will be removed in langchain-community version 1.0.0.

# Load Embedding Model : Legacy
from langchain_community.embeddings import OllamaEmbeddings

# Serving and load the desired embedding model.
ollama_embeddings = OllamaEmbeddings(
    model="nomic-embed-text",  # model=<model-name>
)

So, in this tutorial, we used the OllamaEmbeddings class from langchain-ollama.

# Load Embedding Model : Latest
from langchain_ollama import OllamaEmbeddings

# Serving and load the desired embedding model.
ollama_embeddings = OllamaEmbeddings(
    model="nomic-embed-text",  # model=<model-name>
)

Let's use the loaded model to embed the Query and Documents.

# Embedding Query
embedded_query = ollama_embeddings.embed_query(q)

# Embedding Documents
embedded_docs = ollama_embeddings.embed_documents(docs)

print(f"Embedding Dimension Output: {len(embedded_query)}")
Embedding Dimension Output: 768

The similarity calculation results

Let's use the vector values of the query and documents obtained earlier to calculate the similarity.

Using the Sklearn library in Python, you can easily calculate cosine similarity.

from sklearn.metrics.pairwise import cosine_similarity

# Calculate Cosine Similarity
similarity = cosine_similarity([embedded_query], embedded_docs)

# Sorting by Similarity in descending order
sorted_idx = similarity.argsort()[0][::-1]

# Output Result
print("[Query] Tell me about LangChain.\n====================================")
for i, idx in enumerate(sorted_idx):
    print(f"[{i}] similarity: {similarity[0][idx]:.3f} | {docs[idx]}")
    print()
[Query] Tell me about LangChain.
    ====================================
    [0] similarity: 0.775 | The LangChain English tutorial is structured based on LangChain's official documentation, cookbook, and various practical examples to help users utilize LangChain more easily and effectively.
    
    [1] similarity: 0.748 | LangChain simplifies the process of building applications with large language models.
    
    [2] similarity: 0.745 | LangChain simplifies the process of building applications with large-scale language models.
    
    [3] similarity: 0.399 | Retrieval-Augmented Generation (RAG) is an effective technique for improving AI responses.
    
    [4] similarity: 0.398 | Hi, nice to meet you.
    

Set up the environment. You may refer to for more details.

You can checkout the for more details.

1. Install Ollama

2. Verify Ollama Installation

In this tutorial, we will use to calculate the similarity between the Query and the Documents.

Ollama
Cosine Similarity
Environment Setup
langchain-opentutorial
Official Website/Installation
Ollama Models
cosine similarity
Overview
Environement Setup
Ollama Install and Model Serving
Identify Supported Embedding Models and Serving Model
Model Load and Embedding
The similarity calculation results
Gwangwon Jung
Teddy Lee
ro__o_jun
BokyungisaGod
Youngjun cho
Youngjun cho
LangChain Open Tutorial
example
guide3
guide4
guide5