LangChain OpenTutorial
  • 🦜️🔗 The LangChain Open Tutorial for Everyone
  • 01-Basic
    • Getting Started on Windows
    • 02-Getting-Started-Mac
    • OpenAI API Key Generation and Testing Guide
    • LangSmith Tracking Setup
    • Using the OpenAI API (GPT-4o Multimodal)
    • Basic Example: Prompt+Model+OutputParser
    • LCEL Interface
    • Runnable
  • 02-Prompt
    • Prompt Template
    • Few-Shot Templates
    • LangChain Hub
    • Personal Prompts for LangChain
    • Prompt Caching
  • 03-OutputParser
    • PydanticOutputParser
    • PydanticOutputParser
    • CommaSeparatedListOutputParser
    • Structured Output Parser
    • JsonOutputParser
    • PandasDataFrameOutputParser
    • DatetimeOutputParser
    • EnumOutputParser
    • Output Fixing Parser
  • 04-Model
    • Using Various LLM Models
    • Chat Models
    • Caching
    • Caching VLLM
    • Model Serialization
    • Check Token Usage
    • Google Generative AI
    • Huggingface Endpoints
    • HuggingFace Local
    • HuggingFace Pipeline
    • ChatOllama
    • GPT4ALL
    • Video Q&A LLM (Gemini)
  • 05-Memory
    • ConversationBufferMemory
    • ConversationBufferWindowMemory
    • ConversationTokenBufferMemory
    • ConversationEntityMemory
    • ConversationKGMemory
    • ConversationSummaryMemory
    • VectorStoreRetrieverMemory
    • LCEL (Remembering Conversation History): Adding Memory
    • Memory Using SQLite
    • Conversation With History
  • 06-DocumentLoader
    • Document & Document Loader
    • PDF Loader
    • WebBaseLoader
    • CSV Loader
    • Excel File Loading in LangChain
    • Microsoft Word(doc, docx) With Langchain
    • Microsoft PowerPoint
    • TXT Loader
    • JSON
    • Arxiv Loader
    • UpstageDocumentParseLoader
    • LlamaParse
    • HWP (Hangeul) Loader
  • 07-TextSplitter
    • Character Text Splitter
    • 02. RecursiveCharacterTextSplitter
    • Text Splitting Methods in NLP
    • TokenTextSplitter
    • SemanticChunker
    • Split code with Langchain
    • MarkdownHeaderTextSplitter
    • HTMLHeaderTextSplitter
    • RecursiveJsonSplitter
  • 08-Embedding
    • OpenAI Embeddings
    • CacheBackedEmbeddings
    • HuggingFace Embeddings
    • Upstage
    • Ollama Embeddings With Langchain
    • LlamaCpp Embeddings With Langchain
    • GPT4ALL
    • Multimodal Embeddings With Langchain
  • 09-VectorStore
    • Vector Stores
    • Chroma
    • Faiss
    • Pinecone
    • Qdrant
    • Elasticsearch
    • MongoDB Atlas
    • PGVector
    • Neo4j
    • Weaviate
    • Faiss
    • {VectorStore Name}
  • 10-Retriever
    • VectorStore-backed Retriever
    • Contextual Compression Retriever
    • Ensemble Retriever
    • Long Context Reorder
    • Parent Document Retriever
    • MultiQueryRetriever
    • MultiVectorRetriever
    • Self-querying
    • TimeWeightedVectorStoreRetriever
    • TimeWeightedVectorStoreRetriever
    • Kiwi BM25 Retriever
    • Ensemble Retriever with Convex Combination (CC)
  • 11-Reranker
    • Cross Encoder Reranker
    • JinaReranker
    • FlashRank Reranker
  • 12-RAG
    • Understanding the basic structure of RAG
    • RAG Basic WebBaseLoader
    • Exploring RAG in LangChain
    • RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
    • Conversation-With-History
    • Translation
    • Multi Modal RAG
  • 13-LangChain-Expression-Language
    • RunnablePassthrough
    • Inspect Runnables
    • RunnableLambda
    • Routing
    • Runnable Parallel
    • Configure-Runtime-Chain-Components
    • Creating Runnable objects with chain decorator
    • RunnableWithMessageHistory
    • Generator
    • Binding
    • Fallbacks
    • RunnableRetry
    • WithListeners
    • How to stream runnables
  • 14-Chains
    • Summarization
    • SQL
    • Structured Output Chain
    • StructuredDataChat
  • 15-Agent
    • Tools
    • Bind Tools
    • Tool Calling Agent
    • Tool Calling Agent with More LLM Models
    • Iteration-human-in-the-loop
    • Agentic RAG
    • CSV/Excel Analysis Agent
    • Agent-with-Toolkits-File-Management
    • Make Report Using RAG, Web searching, Image generation Agent
    • TwoAgentDebateWithTools
    • React Agent
  • 16-Evaluations
    • Generate synthetic test dataset (with RAGAS)
    • Evaluation using RAGAS
    • HF-Upload
    • LangSmith-Dataset
    • LLM-as-Judge
    • Embedding-based Evaluator(embedding_distance)
    • LangSmith Custom LLM Evaluation
    • Heuristic Evaluation
    • Compare experiment evaluations
    • Summary Evaluators
    • Groundedness Evaluation
    • Pairwise Evaluation
    • LangSmith Repeat Evaluation
    • LangSmith Online Evaluation
    • LangFuse Online Evaluation
  • 17-LangGraph
    • 01-Core-Features
      • Understanding Common Python Syntax Used in LangGraph
      • Title
      • Building a Basic Chatbot with LangGraph
      • Building an Agent with LangGraph
      • Agent with Memory
      • LangGraph Streaming Outputs
      • Human-in-the-loop
      • LangGraph Manual State Update
      • Asking Humans for Help: Customizing State in LangGraph
      • DeleteMessages
      • DeleteMessages
      • LangGraph ToolNode
      • LangGraph ToolNode
      • Branch Creation for Parallel Node Execution
      • Conversation Summaries with LangGraph
      • Conversation Summaries with LangGraph
      • LangGrpah Subgraph
      • How to transform the input and output of a subgraph
      • LangGraph Streaming Mode
      • Errors
      • A Long-Term Memory Agent
    • 02-Structures
      • LangGraph-Building-Graphs
      • Naive RAG
      • Add Groundedness Check
      • Adding a Web Search Module
      • LangGraph-Add-Query-Rewrite
      • Agentic RAG
      • Adaptive RAG
      • Multi-Agent Structures (1)
      • Multi Agent Structures (2)
    • 03-Use-Cases
      • LangGraph Agent Simulation
      • Meta Prompt Generator based on User Requirements
      • CRAG: Corrective RAG
      • Plan-and-Execute
      • Multi Agent Collaboration Network
      • Multi Agent Collaboration Network
      • Multi-Agent Supervisor
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • 08-LangGraph-Hierarchical-Multi-Agent-Teams
      • SQL-Agent
      • 10-LangGraph-Research-Assistant
      • LangGraph Code Assistant
      • Deploy on LangGraph Cloud
      • Tree of Thoughts (ToT)
      • Ollama Deep Researcher (Deepseek-R1)
      • Functional API
      • Reflection in LangGraph
  • 19-Cookbook
    • 01-SQL
      • TextToSQL
      • SpeechToSQL
    • 02-RecommendationSystem
      • ResumeRecommendationReview
    • 03-GraphDB
      • Movie QA System with Graph Database
      • 05-TitanicQASystem
      • Real-Time GraphRAG QA
    • 04-GraphRAG
      • Academic Search System
      • Academic QA System with GraphRAG
    • 05-AIMemoryManagementSystem
      • ConversationMemoryManagementSystem
    • 06-Multimodal
      • Multimodal RAG
      • Shopping QnA
    • 07-Agent
      • 14-MoARAG
      • CoT Based Smart Web Search
      • 16-MultiAgentShoppingMallSystem
      • Agent-Based Dynamic Slot Filling
      • Code Debugging System
      • New Employee Onboarding Chatbot
      • 20-LangGraphStudio-MultiAgent
      • Multi-Agent Scheduler System
    • 08-Serving
      • FastAPI Serving
      • Sending Requests to Remote Graph Server
      • Building a Agent API with LangServe: Integrating Currency Exchange and Trip Planning
    • 08-SyntheticDataset
      • Synthetic Dataset Generation using RAG
    • 09-Monitoring
      • Langfuse Selfhosting
Powered by GitBook
On this page
  • Overview
  • Table of Contents
  • References
  • Environment Setup
  • Handling Input and Output
  • Using itemgetter as a Shortcut
  • Understanding Parallel Processing Step-by-Step
  • Parallel Processing
  1. 13-LangChain-Expression-Language

Runnable Parallel

PreviousRoutingNextConfigure-Runtime-Chain-Components

Last updated 28 days ago

  • Author:

  • Peer Review: ,

  • Proofread :

  • This is a part of

Overview

This tutorial covers RunnableParallel, a core component of the LangChain Expression Language(LCEL).

RunnableParallel is designed to execute multiple Runnable objects in parallel and return a mapping of their outputs.

This class delivers the same input to each Runnable, making it ideal for running independent tasks concurrently. Moreover, we can instantiate RunnableParallel directly or use a dictionary literal within a sequence.

Table of Contents

References


Environment Setup

[Note]

  • langchain-opentutorial is a package that provides a set of easy-to-use environment setup, useful functions and utilities for tutorials.

%%capture --no-stderr
%pip install langchain-opentutorial
# Install required packages
from langchain_opentutorial import package

package.install(
    [
        "langsmith",
        "langchain_community",
        "langchain_core",
        "langchain_openai",
        "faiss-cpu",
    ],
    verbose=False,
    upgrade=False,
)
# Set environment variables
from langchain_opentutorial import set_env

set_env(
    {
        "OPENAI_API_KEY": "",
        "LANGCHAIN_API_KEY": "",
        "LANGCHAIN_TRACING_V2": "true",
        "LANGCHAIN_ENDPOINT": "https://api.smith.langchain.com",
        "LANGCHAIN_PROJECT": "05-RunnableParallel",
    }
)
Environment variables have been set successfully.

You can alternatively set API keys such as OPENAI_API_KEY in a .env file and load them.

[Note] This is not necessary if you've already set the required API keys in previous steps.

# Load API keys from .env file
from dotenv import load_dotenv

load_dotenv(override=True)
True

Handling Input and Output

RunnableParallel is useful for manipulating the output of one Runnable within a sequence to match the input format requirements of the next Runnable.

Let's suppose a prompt expects input as a map with keys (context , question).

The user input is simply the question, providing content. Therefore, you'll need to use a retriever to get the context and pass the user input under the question key.

from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# Create a FAISS vector store from text
vectorstore = FAISS.from_texts(
    ["Teddy is an AI engineer who loves programming!"], embedding=OpenAIEmbeddings()
)

# Use the vector store as a retriever
retriever = vectorstore.as_retriever()

# Define the template
template = """Answer the question based only on the following context:
{context}

Question: {question}
"""

# Create a chat prompt from the template
prompt = ChatPromptTemplate.from_template(template)

# Initialize the ChatOpenAI model
model = ChatOpenAI(model="gpt-4o-mini")

# Construct the retrieval chain
retrieval_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

# Execute the retrieval chain to obtain an answer to the question
retrieval_chain.invoke("What is Teddy's occupation?")
"Teddy's occupation is an AI engineer."

Note that type conversion is handled automatically when configuring RunnableParallel with other Runnables. We don't need to manually wrap the dictionary input provided to the RunnableParallel class.

The following three methods present different initialization approaches that produce the same result:

# Automatically wrapped into a RunnableParallel
1. {"context": retriever, "question": RunnablePassthrough()}

2. RunnableParallel({"context": retriever, "question": RunnablePassthrough()})

3. RunnableParallel(context=retriever, question=RunnablePassthrough())

Using itemgetter as a Shortcut

Python’s itemgetter function offers a shortcut for extracting specific data from a map when it is combined with RunnableParallel .

For example, itemgetter extracts specific keys from a map.

from operator import itemgetter

from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# Create a FAISS vector store from text
vectorstore = FAISS.from_texts(
    ["Teddy is an AI engineer who loves programming!"], embedding=OpenAIEmbeddings()
)
# Use the vector store as a retriever
retriever = vectorstore.as_retriever()

# Define the template
template = """Answer the question based only on the following context:
{context}

Question: {question}

Answer in the following language: {language}
"""

# Create a chat prompt from the template
prompt = ChatPromptTemplate.from_template(template)

# Construct the chain
chain = (
    {
        "context": itemgetter("question") | retriever,
        "question": itemgetter("question"),
        "language": itemgetter("language"),
    }
    | prompt
    | ChatOpenAI(model="gpt-4o-mini")
    | StrOutputParser()
)

# Invoke the chain to answer the question
chain.invoke({"question": "What is Teddy's occupation?", "language": "English"})
"Teddy's occupation is an AI engineer."

Understanding Parallel Processing Step-by-Step

Using RunnableParallel can easily run multiple Runnables in parallel and return a map of their outputs.

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_openai import ChatOpenAI

# Initialize the ChatOpenAI model
model = ChatOpenAI(model="gpt-4o-mini")

# Define the chain for asking about capitals
capital_chain = (
    ChatPromptTemplate.from_template("Where is the capital of the {country}?")
    | model
    | StrOutputParser()
)

# Define the chain for asking about areas
area_chain = (
    ChatPromptTemplate.from_template("What is the area of the {country}?")
    | model
    | StrOutputParser()
)

# Create a RunnableParallel object to execute capital_chain and area_chain in parallel
map_chain = RunnableParallel(capital=capital_chain, area=area_chain)

# Invoke map_chain to ask about both the capital and area
map_chain.invoke({"country": "United States"})
{'capital': 'The capital of the United States is Washington, D.C.',
     'area': 'The total area of the United States is approximately 3.8 million square miles (about 9.8 million square kilometers). This includes all 50 states and the District of Columbia. If you need more specific details or comparisons, feel free to ask!'}

The following example explains how to execute chains that have different input template variables.

# Define the chain for asking about capitals
capital_chain2 = (
    ChatPromptTemplate.from_template("Where is the capital of the {country1}?")
    | model
    | StrOutputParser()
)

# Define the chain for asking about areas
area_chain2 = (
    ChatPromptTemplate.from_template("What is the area of the {country2}?")
    | model
    | StrOutputParser()
)

# Create a RunnableParallel object to execute capital_chain2 and area_chain2 in parallel
map_chain2 = RunnableParallel(capital=capital_chain2, area=area_chain2)

# Invoke map_chain with specific values for each key
map_chain2.invoke({"country1": "Republic of Korea", "country2": "United States"})
{'capital': 'The capital of the Republic of Korea (South Korea) is Seoul.',
     'area': 'The total area of the United States is approximately 3.8 million square miles (about 9.8 million square kilometers). This includes all 50 states and the District of Columbia.'}

Parallel Processing

RunnableParallel is particularly useful for running independent processes in parallel because each Runnable in the map is executed concurrently.

For example, you can see that area_chain, capital_chain, and map_chain take almost the same execution time, even though map_chain runs the other two chains in parallel.

%%timeit

# Invoke the chain for area and measure execution time
area_chain.invoke({"country": "United States"})
1.49 s ± 208 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit

# Invoke the chain for capital and measure execution time
capital_chain.invoke({"country": "United States"})
860 ms ± 195 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit

# Invoke the chain constructed in parallel and measure execution time
map_chain.invoke({"country": "United States"})
1.65 s ± 379 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Set up the environment. You may refer to for more details.

You can check out the for more details.

RunnableParallel
itemgetter
FAISS
Environment Setup
langchain-opentutorial
Jaemin Hong
ranian963
Jinu Cho
Chaeyoon Kim
LangChain Open Tutorial
Overview
Environment Setup
Handling Input and Output
Using itemgetter as a Shortcut
Understanding Parallel Processing Step-by-Step
Parallel Processing